Commit 9ff9b0d3 authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:

 - Add redirect_neigh() BPF packet redirect helper, allowing to limit
   stack traversal in common container configs and improving TCP
   back-pressure.

   Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.

 - Expand netlink policy support and improve policy export to user
   space. (Ge)netlink core performs request validation according to
   declared policies. Expand the expressiveness of those policies
   (min/max length and bitmasks). Allow dumping policies for particular
   commands. This is used for feature discovery by user space (instead
   of kernel version parsing or trial and error).

 - Support IGMPv3/MLDv2 multicast listener discovery protocols in
   bridge.

 - Allow more than 255 IPv4 multicast interfaces.

 - Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
   packets of TCPv6.

 - In Multi-patch TCP (MPTCP) support conc...
parents 840e5bb3 105faa87
Showing with 465 additions and 57 deletions
+465 -57
......@@ -191,6 +191,10 @@ N: Krishna Balasubramanian
E: balasub@cis.ohio-state.edu
D: Wrote SYS V IPC (part of standard kernel since 0.99.10)
B: Robert Baldyga
E: r.baldyga@hackerion.com
D: Samsung S3FWRN5 NCI NFC Controller
N: Chris Ball
E: chris@printf.net
D: Former maintainer of the MMC/SD/SDIO subsystem.
......
......@@ -1349,6 +1349,11 @@
Format: <interval>,<probability>,<space>,<times>
See also Documentation/fault-injection/.
fb_tunnels= [NET]
Format: { initns | none }
See Documentation/admin-guide/sysctl/net.rst for
fb_tunnels_only_for_init_ns
floppy= [HW]
See Documentation/admin-guide/blockdev/floppy.rst.
......
......@@ -300,7 +300,6 @@ Note:
0: 0 1 2 3 4 5 6 7
RSS hash key:
84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8:43:e3:c9:0c:fd:17:55:c2:3a:4d:69:ed:f1:42:89
netdev_tstamp_prequeue
----------------------
......@@ -321,11 +320,20 @@ fb_tunnels_only_for_init_net
----------------------------
Controls if fallback tunnels (like tunl0, gre0, gretap0, erspan0,
sit0, ip6tnl0, ip6gre0) are automatically created when a new
network namespace is created, if corresponding tunnel is present
in initial network namespace.
If set to 1, these devices are not automatically created, and
user space is responsible for creating them if needed.
sit0, ip6tnl0, ip6gre0) are automatically created. There are 3 possibilities
(a) value = 0; respective fallback tunnels are created when module is
loaded in every net namespaces (backward compatible behavior).
(b) value = 1; [kcmd value: initns] respective fallback tunnels are
created only in init net namespace and every other net namespace will
not have them.
(c) value = 2; [kcmd value: none] fallback tunnels are not created
when a module is loaded in any of the net namespace. Setting value to
"2" is pointless after boot if these modules are built-in, so there is
a kernel command-line option that can change this default. Please refer to
Documentation/admin-guide/kernel-parameters.txt for additional details.
Not creating fallback tunnels gives control to userspace to create
whatever is needed only and avoid creating devices which are redundant.
Default : 0 (for compatibility reasons)
......
......@@ -60,13 +60,13 @@ Q: Where can I find patches currently under discussion for BPF subsystem?
A: All patches that are Cc'ed to netdev are queued for review under netdev
patchwork project:
http://patchwork.ozlabs.org/project/netdev/list/
https://patchwork.kernel.org/project/netdevbpf/list/
Those patches which target BPF, are assigned to a 'bpf' delegate for
further processing from BPF maintainers. The current queue with
patches under review can be found at:
https://patchwork.ozlabs.org/project/netdev/list/?delegate=77147
https://patchwork.kernel.org/project/netdevbpf/list/?delegate=121173
Once the patches have been reviewed by the BPF community as a whole
and approved by the BPF maintainers, their status in patchwork will be
......@@ -149,7 +149,7 @@ In case the patch or patch series has to be reworked and sent out
again in a second or later revision, it is also required to add a
version number (``v2``, ``v3``, ...) into the subject prefix::
git format-patch --subject-prefix='PATCH net-next v2' start..finish
git format-patch --subject-prefix='PATCH bpf-next v2' start..finish
When changes have been requested to the patch series, always send the
whole patch series again with the feedback incorporated (never send
......@@ -479,17 +479,18 @@ LLVM's static compiler lists the supported targets through
$ llc --version
LLVM (http://llvm.org/):
LLVM version 6.0.0svn
LLVM version 10.0.0
Optimized build.
Default target: x86_64-unknown-linux-gnu
Host CPU: skylake
Registered Targets:
bpf - BPF (host endian)
bpfeb - BPF (big endian)
bpfel - BPF (little endian)
x86 - 32-bit X86: Pentium-Pro and above
x86-64 - 64-bit X86: EM64T and AMD64
aarch64 - AArch64 (little endian)
bpf - BPF (host endian)
bpfeb - BPF (big endian)
bpfel - BPF (little endian)
x86 - 32-bit X86: Pentium-Pro and above
x86-64 - 64-bit X86: EM64T and AMD64
For developers in order to utilize the latest features added to LLVM's
BPF back end, it is advisable to run the latest LLVM releases. Support
......@@ -517,6 +518,10 @@ from the git repositories::
The built binaries can then be found in the build/bin/ directory, where
you can point the PATH variable to.
Set ``-DLLVM_TARGETS_TO_BUILD`` equal to the target you wish to build, you
will find a full list of targets within the llvm-project/llvm/lib/Target
directory.
Q: Reporting LLVM BPF issues
----------------------------
Q: Should I notify BPF kernel maintainers about issues in LLVM's BPF code
......
......@@ -724,6 +724,31 @@ want to define unused entry in BTF_ID_LIST, like::
BTF_ID_UNUSED
BTF_ID(struct, task_struct)
The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values
and their count, with following syntax::
BTF_SET_START(set)
BTF_ID(type1, name1)
BTF_ID(type2, name2)
BTF_SET_END(set)
resulting in following layout in .BTF_ids section::
__BTF_ID__set__set:
.zero 4
__BTF_ID__type1__name1__3:
.zero 4
__BTF_ID__type2__name2__4:
.zero 4
The ``struct btf_id_set set;`` variable is defined to access the list.
The ``typeX`` name can be one of following::
struct, union, typedef, func
and is used as a filter when resolving the BTF ID value.
All the BTF ID lists and sets are compiled in the .BTF_ids section and
resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
......
......@@ -52,6 +52,7 @@ Program types
prog_cgroup_sysctl
prog_flow_dissector
bpf_lsm
prog_sk_lookup
Map types
......
.. SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
=====================
BPF sk_lookup program
=====================
BPF sk_lookup program type (``BPF_PROG_TYPE_SK_LOOKUP``) introduces programmability
into the socket lookup performed by the transport layer when a packet is to be
delivered locally.
When invoked BPF sk_lookup program can select a socket that will receive the
incoming packet by calling the ``bpf_sk_assign()`` BPF helper function.
Hooks for a common attach point (``BPF_SK_LOOKUP``) exist for both TCP and UDP.
Motivation
==========
BPF sk_lookup program type was introduced to address setup scenarios where
binding sockets to an address with ``bind()`` socket call is impractical, such
as:
1. receiving connections on a range of IP addresses, e.g. 192.0.2.0/24, when
binding to a wildcard address ``INADRR_ANY`` is not possible due to a port
conflict,
2. receiving connections on all or a wide range of ports, i.e. an L7 proxy use
case.
Such setups would require creating and ``bind()``'ing one socket to each of the
IP address/port in the range, leading to resource consumption and potential
latency spikes during socket lookup.
Attachment
==========
BPF sk_lookup program can be attached to a network namespace with
``bpf(BPF_LINK_CREATE, ...)`` syscall using the ``BPF_SK_LOOKUP`` attach type and a
netns FD as attachment ``target_fd``.
Multiple programs can be attached to one network namespace. Programs will be
invoked in the same order as they were attached.
Hooks
=====
The attached BPF sk_lookup programs run whenever the transport layer needs to
find a listening (TCP) or an unconnected (UDP) socket for an incoming packet.
Incoming traffic to established (TCP) and connected (UDP) sockets is delivered
as usual without triggering the BPF sk_lookup hook.
The attached BPF programs must return with either ``SK_PASS`` or ``SK_DROP``
verdict code. As for other BPF program types that are network filters,
``SK_PASS`` signifies that the socket lookup should continue on to regular
hashtable-based lookup, while ``SK_DROP`` causes the transport layer to drop the
packet.
A BPF sk_lookup program can also select a socket to receive the packet by
calling ``bpf_sk_assign()`` BPF helper. Typically, the program looks up a socket
in a map holding sockets, such as ``SOCKMAP`` or ``SOCKHASH``, and passes a
``struct bpf_sock *`` to ``bpf_sk_assign()`` helper to record the
selection. Selecting a socket only takes effect if the program has terminated
with ``SK_PASS`` code.
When multiple programs are attached, the end result is determined from return
codes of all the programs according to the following rules:
1. If any program returned ``SK_PASS`` and selected a valid socket, the socket
is used as the result of the socket lookup.
2. If more than one program returned ``SK_PASS`` and selected a socket, the last
selection takes effect.
3. If any program returned ``SK_DROP``, and no program returned ``SK_PASS`` and
selected a socket, socket lookup fails.
4. If all programs returned ``SK_PASS`` and none of them selected a socket,
socket lookup continues on.
API
===
In its context, an instance of ``struct bpf_sk_lookup``, BPF sk_lookup program
receives information about the packet that triggered the socket lookup. Namely:
* IP version (``AF_INET`` or ``AF_INET6``),
* L4 protocol identifier (``IPPROTO_TCP`` or ``IPPROTO_UDP``),
* source and destination IP address,
* source and destination L4 port,
* the socket that has been selected with ``bpf_sk_assign()``.
Refer to ``struct bpf_sk_lookup`` declaration in ``linux/bpf.h`` user API
header, and `bpf-helpers(7)
<https://man7.org/linux/man-pages/man7/bpf-helpers.7.html>`_ man-page section
for ``bpf_sk_assign()`` for details.
Example
=======
See ``tools/testing/selftests/bpf/prog_tests/sk_lookup.c`` for the reference
implementation.
......@@ -50,6 +50,13 @@ Optional properties:
- reset-names: If the "reset" property is specified, this property should have
the value "switch" to denote the switch reset line.
- clocks: when provided, the first phandle is to the switch's main clock and
is valid for both BCM7445 and BCM7278. The second phandle is only applicable
to BCM7445 and is to support dividing the switch core clock.
- clock-names: when provided, the first phandle must be "sw_switch", and the
second must be named "sw_switch_mdiv".
Port subnodes:
Optional properties:
......
......@@ -20,6 +20,11 @@ Optional properties:
- systemport,num-tier1-arb: number of tier 1 arbiters, an integer
- systemport,num-txq: number of HW transmit queues, an integer
- systemport,num-rxq: number of HW receive queues, an integer
- clocks: When provided, must be two phandles to the functional clocks nodes of
the SYSTEMPORT block. The first phandle is the main SYSTEMPORT clock used
during normal operation, while the second phandle is the Wake-on-LAN clock.
- clock-names: When provided, names of the functional clock phandles, first
name should be "sw_sysport" and second should be "sw_sysportwol".
Example:
ethernet@f04a0000 {
......
......@@ -4,6 +4,12 @@ Required properties:
- compatible : Should be "fsl,<processor>-flexcan"
where <processor> is imx8qm, imx6q, imx28, imx53, imx35, imx25, p1010,
vf610, ls1021ar2, lx2160ar1, ls1028ar1.
The ls1028ar1 must be followed by lx2160ar1, e.g.
- "fsl,ls1028ar1-flexcan", "fsl,lx2160ar1-flexcan"
An implementation should also claim any of the following compatibles
that it is fully backwards compatible with:
......@@ -25,12 +31,10 @@ Optional properties:
endian.
- fsl,stop-mode: register bits of stop mode control, the format is
<&gpr req_gpr req_bit ack_gpr ack_bit>.
<&gpr req_gpr req_bit>.
gpr is the phandle to general purpose register node.
req_gpr is the gpr register offset of CAN stop request.
req_bit is the bit offset of CAN stop request.
ack_gpr is the gpr register offset of CAN stop acknowledge.
ack_bit is the bit offset of CAN stop acknowledge.
- fsl,clk-source: Select the clock source to the CAN Protocol Engine (PE).
It's SoC Implementation dependent. Refer to RM for detailed
......
......@@ -12,6 +12,9 @@ Required properties:
Optional properties:
- vdd-supply: Regulator that powers the CAN controller.
- xceiver-supply: Regulator that powers the CAN transceiver.
- gpio-controller: Indicates this device is a GPIO controller.
- #gpio-cells: Should be two. The first cell is the pin number and
the second cell is used to specify the gpio polarity.
Example:
can0: can@1 {
......@@ -19,7 +22,9 @@ Example:
reg = <1>;
clocks = <&clk24m>;
interrupt-parent = <&gpio4>;
interrupts = <13 0x2>;
interrupts = <13 IRQ_TYPE_LEVEL_LOW>;
vdd-supply = <&reg5v0>;
xceiver-supply = <&reg5v0>;
gpio-controller;
#gpio-cells = <2>;
};
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/net/can/microchip,mcp251xfd.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title:
Microchip MCP2517FD and MCP2518FD stand-alone CAN controller device tree
bindings
maintainers:
- Marc Kleine-Budde <mkl@pengutronix.de>
properties:
compatible:
oneOf:
- const: microchip,mcp2517fd
description: for MCP2517FD
- const: microchip,mcp2518fd
description: for MCP2518FD
- const: microchip,mcp251xfd
description: to autodetect chip variant
reg:
maxItems: 1
interrupts:
maxItems: 1
clocks:
maxItems: 1
vdd-supply:
description: Regulator that powers the CAN controller.
xceiver-supply:
description: Regulator that powers the CAN transceiver.
microchip,rx-int-gpios:
description:
GPIO phandle of GPIO connected to to INT1 pin of the MCP251XFD, which
signals a pending RX interrupt.
maxItems: 1
spi-max-frequency:
description:
Must be half or less of "clocks" frequency.
maximum: 20000000
required:
- compatible
- reg
- interrupts
- clocks
additionalProperties: false
examples:
- |
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/interrupt-controller/irq.h>
spi0 {
#address-cells = <1>;
#size-cells = <0>;
can@0 {
compatible = "microchip,mcp251xfd";
reg = <0>;
clocks = <&can0_osc>;
pinctrl-names = "default";
pinctrl-0 = <&can0_pins>;
spi-max-frequency = <20000000>;
interrupts-extended = <&gpio 13 IRQ_TYPE_LEVEL_LOW>;
microchip,rx-int-gpios = <&gpio 27 GPIO_ACTIVE_LOW>;
vdd-supply = <&reg5v0>;
xceiver-supply = <&reg5v0>;
};
};
......@@ -2,13 +2,15 @@ Renesas R-Car CAN controller Device Tree Bindings
-------------------------------------------------
Required properties:
- compatible: "renesas,can-r8a7743" if CAN controller is a part of R8A7743 SoC.
- compatible: "renesas,can-r8a7742" if CAN controller is a part of R8A7742 SoC.
"renesas,can-r8a7743" if CAN controller is a part of R8A7743 SoC.
"renesas,can-r8a7744" if CAN controller is a part of R8A7744 SoC.
"renesas,can-r8a7745" if CAN controller is a part of R8A7745 SoC.
"renesas,can-r8a77470" if CAN controller is a part of R8A77470 SoC.
"renesas,can-r8a774a1" if CAN controller is a part of R8A774A1 SoC.
"renesas,can-r8a774b1" if CAN controller is a part of R8A774B1 SoC.
"renesas,can-r8a774c0" if CAN controller is a part of R8A774C0 SoC.
"renesas,can-r8a774e1" if CAN controller is a part of R8A774E1 SoC.
"renesas,can-r8a7778" if CAN controller is a part of R8A7778 SoC.
"renesas,can-r8a7779" if CAN controller is a part of R8A7779 SoC.
"renesas,can-r8a7790" if CAN controller is a part of R8A7790 SoC.
......@@ -37,8 +39,8 @@ Required properties:
- pinctrl-0: pin control group to be used for this controller.
- pinctrl-names: must be "default".
Required properties for R8A774A1, R8A774B1, R8A774C0, R8A7795, R8A7796,
R8A77965, R8A77990, and R8A77995:
Required properties for R8A774A1, R8A774B1, R8A774C0, R8A774E1, R8A7795,
R8A7796, R8A77965, R8A77990, and R8A77995:
For the denoted SoCs, "clkp2" can be CANFD clock. This is a div6 clock and can
be used by both CAN and CAN FD controller at the same time. It needs to be
scaled to maximum frequency if any of these controllers use it. This is done
......
......@@ -7,6 +7,7 @@ Required properties:
- "renesas,r8a774a1-canfd" for R8A774A1 (RZ/G2M) compatible controller.
- "renesas,r8a774b1-canfd" for R8A774B1 (RZ/G2N) compatible controller.
- "renesas,r8a774c0-canfd" for R8A774C0 (RZ/G2E) compatible controller.
- "renesas,r8a774e1-canfd" for R8A774E1 (RZ/G2H) compatible controller.
- "renesas,r8a7795-canfd" for R8A7795 (R-Car H3) compatible controller.
- "renesas,r8a7796-canfd" for R8A7796 (R-Car M3-W) compatible controller.
- "renesas,r8a77965-canfd" for R8A77965 (R-Car M3-N) compatible controller.
......@@ -32,8 +33,8 @@ The name of the child nodes are "channel0" and "channel1" respectively. Each
child node supports the "status" property only, which is used to
enable/disable the respective channel.
Required properties for R8A774A1, R8A774B1, R8A774C0, R8A7795, R8A7796,
R8A77965, R8A77990, and R8A77995:
Required properties for R8A774A1, R8A774B1, R8A774C0, R8A774E1, R8A7795,
R8A7796, R8A77965, R8A77990, and R8A77995:
In the denoted SoCs, canfd clock is a div6 clock and can be used by both CAN
and CAN FD controller at the same time. It needs to be scaled to maximum
frequency if any of these controllers use it. This is done using the below
......
......@@ -95,7 +95,7 @@ Ethernet switch connected via MDIO to the host, CPU port wired to eth0:
fixed-link {
speed = <1000>;
duplex-full;
full-duplex;
};
};
......@@ -104,8 +104,9 @@ Ethernet switch connected via MDIO to the host, CPU port wired to eth0:
#address-cells = <1>;
#size-cells = <0>;
switch0: ethernet-switch@30 {
switch0: ethernet-switch@1e {
compatible = "brcm,bcm53125";
reg = <30>;
#address-cells = <1>;
#size-cells = <0>;
......@@ -128,7 +129,7 @@ Ethernet switch connected via MDIO to the host, CPU port wired to eth0:
label = "cable-modem";
fixed-link {
speed = <1000>;
duplex-full;
full-duplex;
};
phy-mode = "rgmii-txid";
};
......@@ -138,7 +139,7 @@ Ethernet switch connected via MDIO to the host, CPU port wired to eth0:
label = "cpu";
fixed-link {
speed = <1000>;
duplex-full;
full-duplex;
};
phy-mode = "rgmii-txid";
ethernet = <&eth0>;
......
......@@ -5,6 +5,7 @@ Required properties:
- compatible: may be compatible = "mediatek,mt7530"
or compatible = "mediatek,mt7621"
or compatible = "mediatek,mt7531"
- #address-cells: Must be 1.
- #size-cells: Must be 0.
- mediatek,mcm: Boolean; if defined, indicates that either MT7530 is the part
......@@ -32,10 +33,14 @@ Required properties for the child nodes within ports container:
- reg: Port address described must be 6 for CPU port and from 0 to 5 for
user ports.
- phy-mode: String, must be either "trgmii" or "rgmii" for port labeled
"cpu".
Port 5 of the switch is muxed between:
- phy-mode: String, the following values are acceptable for port labeled
"cpu":
If compatible mediatek,mt7530 or mediatek,mt7621 is set,
must be either "trgmii" or "rgmii"
If compatible mediatek,mt7531 is set,
must be either "sgmii", "1000base-x" or "2500base-x"
Port 5 of mt7530 and mt7621 switch is muxed between:
1. GMAC5: GMAC5 can interface with another external MAC or PHY.
2. PHY of port 0 or port 4: PHY interfaces with an external MAC like 2nd GMAC
of the SOC. Used in many setups where port 0/4 becomes the WAN port.
......
......@@ -120,6 +120,13 @@ properties:
and is useful for determining certain configuration settings
such as flow control thresholds.
rx-internal-delay-ps:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
RGMII Receive Clock Delay defined in pico seconds.
This is used for controllers that have configurable RX internal delays.
If this property is present then the MAC applies the RX delay.
sfp:
$ref: /schemas/types.yaml#definitions/phandle
description:
......@@ -131,6 +138,13 @@ properties:
The size of the controller\'s transmit fifo in bytes. This
is used for components that can have configurable fifo sizes.
tx-internal-delay-ps:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
RGMII Transmit Clock Delay defined in pico seconds.
This is used for controllers that have configurable TX internal delays.
If this property is present then the MAC applies the TX delay.
managed:
description:
Specifies the PHY management type. If auto is set and fixed-link
......
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/net/intel,dwmac-plat.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Intel DWMAC glue layer Device Tree Bindings
maintainers:
- Vineetha G. Jaya Kumaran <vineetha.g.jaya.kumaran@intel.com>
select:
properties:
compatible:
contains:
enum:
- intel,keembay-dwmac
required:
- compatible
allOf:
- $ref: "snps,dwmac.yaml#"
properties:
compatible:
oneOf:
- items:
- enum:
- intel,keembay-dwmac
- const: snps,dwmac-4.10a
clocks:
items:
- description: GMAC main clock
- description: PTP reference clock
- description: Tx clock
clock-names:
items:
- const: stmmaceth
- const: ptp_ref
- const: tx_clk
required:
- compatible
- clocks
- clock-names
examples:
# FIXME: Remove defines and include the correct header file
# once it is available in mainline.
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/interrupt-controller/irq.h>
#define MOVISOC_KMB_PSS_GBE
#define MOVISOC_KMB_PSS_AUX_GBE_PTP
#define MOVISOC_KMB_PSS_AUX_GBE_TX
stmmac_axi_setup: stmmac-axi-config {
snps,lpi_en;
snps,wr_osr_lmt = <0x0>;
snps,rd_osr_lmt = <0x2>;
snps,blen = <0 0 0 0 16 8 4>;
};
mtl_rx_setup: rx-queues-config {
snps,rx-queues-to-use = <2>;
snps,rx-sched-sp;
queue0 {
snps,dcb-algorithm;
snps,map-to-dma-channel = <0x0>;
snps,priority = <0x0>;
};
queue1 {
snps,dcb-algorithm;
snps,map-to-dma-channel = <0x1>;
snps,priority = <0x1>;
};
};
mtl_tx_setup: tx-queues-config {
snps,tx-queues-to-use = <2>;
snps,tx-sched-wrr;
queue0 {
snps,weight = <0x10>;
snps,dcb-algorithm;
snps,priority = <0x0>;
};
queue1 {
snps,weight = <0x10>;
snps,dcb-algorithm;
snps,priority = <0x1>;
};
};
gmac0: ethernet@3a000000 {
compatible = "intel,keembay-dwmac", "snps,dwmac-4.10a";
interrupts = <GIC_SPI 119 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "macirq";
reg = <0x3a000000 0x8000>;
snps,perfect-filter-entries = <128>;
phy-handle = <&eth_phy0>;
phy-mode = "rgmii";
rx-fifo-depth = <4096>;
tx-fifo-depth = <4096>;
clock-names = "stmmaceth", "ptp_ref", "tx_clk";
clocks = <&scmi_clk MOVISOC_KMB_PSS_GBE>,
<&scmi_clk MOVISOC_KMB_PSS_AUX_GBE_PTP>,
<&scmi_clk MOVISOC_KMB_PSS_AUX_GBE_TX>;
snps,pbl = <0x4>;
snps,axi-config = <&stmmac_axi_setup>;
snps,mtl-rx-config = <&mtl_rx_setup>;
snps,mtl-tx-config = <&mtl_tx_setup>;
snps,tso;
status = "okay";
mdio0 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "snps,dwmac-mdio";
ethernet-phy@0 {
reg = <0>;
};
};
};
...
......@@ -45,3 +45,37 @@ dfx-server {
ranges = <0 MBUS_ID(0x08, 0x00) 0 0x100000>;
reg = <MBUS_ID(0x08, 0x00) 0 0x100000>;
};
Marvell Prestera SwitchDev bindings
-----------------------------------
Optional properties:
- compatible: must be "marvell,prestera"
- base-mac-provider: describes handle to node which provides base mac address,
might be a static base mac address or nvme cell provider.
Example:
eeprom_mac_addr: eeprom-mac-addr {
compatible = "eeprom,mac-addr-cell";
status = "okay";
nvmem = <&eeprom_at24>;
};
prestera {
compatible = "marvell,prestera";
status = "okay";
base-mac-provider = <&eeprom_mac_addr>;
};
The current implementation of Prestera Switchdev PCI interface driver requires
that BAR2 is assigned to 0xf6000000 as base address from the PCI IO range:
&cp0_pcie0 {
ranges = <0x81000000 0x0 0xfb000000 0x0 0xfb000000 0x0 0xf0000
0x82000000 0x0 0xf6000000 0x0 0xf6000000 0x0 0x2000000
0x82000000 0x0 0xf9000000 0x0 0xf9000000 0x0 0x100000>;
phys = <&cp0_comphy0 0>;
status = "okay";
};
* Samsung S3FWRN5 NCI NFC Controller
Required properties:
- compatible: Should be "samsung,s3fwrn5-i2c".
- reg: address on the bus
- interrupts: GPIO interrupt to which the chip is connected
- s3fwrn5,en-gpios: Output GPIO pin used for enabling/disabling the chip
- s3fwrn5,fw-gpios: Output GPIO pin used to enter firmware mode and
sleep/wakeup control
Example:
&hsi2c_4 {
s3fwrn5@27 {
compatible = "samsung,s3fwrn5-i2c";
reg = <0x27>;
interrupt-parent = <&gpa1>;
interrupts = <3 0 0>;
s3fwrn5,en-gpios = <&gpf1 4 0>;
s3fwrn5,fw-gpios = <&gpj0 2 0>;
};
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment