- 04 Dec, 2014 2 commits
-
-
Al Viro authored
a) make get_proc_ns() return a pointer to struct ns_common b) mirror ns_ops in dentry->d_fsdata of ns dentries, so that is_mnt_ns_file() could get away with fewer dereferences. That way struct proc_ns becomes invisible outside of fs/proc/*.c Signed-off-by:
Al Viro <viro@zeniv.linux.org.uk>
-
Al Viro authored
Signed-off-by:
Al Viro <viro@zeniv.linux.org.uk>
-
- 30 Jul, 2014 1 commit
-
-
Eric W. Biederman authored
The synchronous syncrhonize_rcu in switch_task_namespaces makes setns a sufficiently expensive system call that people have complained. Upon inspect nsproxy no longer needs rcu protection for remote reads. remote reads are rare. So optimize for same process reads and write by switching using rask_lock instead. This yields a simpler to understand lock, and a faster setns system call. In particular this fixes a performance regression observed by Rafael David Tinoco <rafael.tinoco@canonical.com>. This is effectively a revert of Pavel Emelyanov's commit cf7b708c Make access to task's nsproxy lighter from 2007. The race this originialy fixed no longer exists as do_notify_parent uses task_active_pid_ns(parent) instead of parent->nsproxy. Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
- 31 Aug, 2013 1 commit
-
-
Eric W. Biederman authored
Remove the test for the impossible case where tsk->nsproxy == NULL. Fork will never be called with tsk->nsproxy == NULL. Only call get_nsproxy when we don't need to generate a new_nsproxy, and mark the case where we don't generate a new nsproxy as likely. Remove the code to drop an unnecessarily acquired nsproxy value. Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
- 27 Aug, 2013 2 commits
-
-
Andy Lutomirski authored
nsproxy.pid_ns is *not* the task's pid namespace. The name should clarify that. This makes it more obvious that setns on a pid namespace is weird -- it won't change the pid namespace shown in procfs. Signed-off-by:
Andy Lutomirski <luto@amacapital.net> Reviewed-by:
"Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Raphael S.Carvalho authored
It seems GCC generates a better code in that way, so I changed that statement. Btw, they have the same semantic, so I'm sending this patch due to performance issues. Acked-by:
Serge E. Hallyn <serge.hallyn@ubuntu.com> Signed-off-by:
Raphael S.Carvalho <raphael.scarv@gmail.com> Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com>
-
- 01 May, 2013 1 commit
-
-
David Howells authored
Split the proc namespace stuff out into linux/proc_ns.h. Signed-off-by:
David Howells <dhowells@redhat.com> cc: netdev@vger.kernel.org cc: Serge E. Hallyn <serge.hallyn@ubuntu.com> cc: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by:
Al Viro <viro@zeniv.linux.org.uk>
-
- 23 Feb, 2013 1 commit
-
-
Al Viro authored
Signed-off-by:
Al Viro <viro@zeniv.linux.org.uk>
-
- 22 Feb, 2013 1 commit
-
-
Yuanhan Liu authored
We can use user_ns, which is also assigned from task_cred_xxx(tsk, user_ns), at the beginning of copy_namespaces(). Signed-off-by:
Yuanhan Liu <yuanhan.liu@linux.intel.com> Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 20 Nov, 2012 4 commits
-
-
Eric W. Biederman authored
- Add CLONE_THREAD to the unshare flags if CLONE_NEWUSER is selected As changing user namespaces is only valid if all there is only a single thread. - Restore the code to add CLONE_VM if CLONE_THREAD is selected and the code to addCLONE_SIGHAND if CLONE_VM is selected. Making the constraints in the code clear. Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
Eric W. Biederman authored
Modify create_new_namespaces to explicitly take a user namespace parameter, instead of implicitly through the task_struct. This allows an implementation of unshare(CLONE_NEWUSER) where the new user namespace is not stored onto the current task_struct until after all of the namespaces are created. Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
Eric W. Biederman authored
- Push the permission check from the core setns syscall into the setns install methods where the user namespace of the target namespace can be determined, and used in a ns_capable call. Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
Eric W. Biederman authored
If an unprivileged user has the appropriate capabilities in their current user namespace allow the creation of new namespaces. Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
- 19 Nov, 2012 6 commits
-
-
Eric W. Biederman authored
This will allow for support for unprivileged mounts in a new user namespace. Acked-by:
"Serge E. Hallyn" <serge@hallyn.com> Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
Eric W. Biederman authored
Unsharing of the pid namespace unlike unsharing of other namespaces does not take affect immediately. Instead it affects the children created with fork and clone. The first of these children becomes the init process of the new pid namespace, the rest become oddball children of pid 0. From the point of view of the new pid namespace the process that created it is pid 0, as it's pid does not map. A couple of different semantics were considered but this one was settled on because it is easy to implement and it is usable from pam modules. The core reasons for the existence of unshare. I took a survey of the callers of pam modules and the following appears to be a representative sample of their logic. { setup stuff include pam child = fork(); if (!child) { setuid() exec /bin/bash } waitpid(child); pam and other cleanup } As you can see there is a fork to create the unprivileged user space process. Which means that the unprivileged user space process will appear as pid 1 in the new pid namespace. Further most login processes do not cope with extraneous children which means shifting the duty of reaping extraneous child process to the creator of those extraneous children makes the system more comprehensible. The practical reason for this set of pid namespace semantics is that it is simple to implement and verify they work correctly. Whereas an implementation that requres changing the struct pid on a process comes with a lot more races and pain. Not the least of which is that glibc caches getpid(). These semantics are implemented by having two notions of the pid namespace of a proces. There is task_active_pid_ns which is the pid namspace the process was created with and the pid namespace that all pids are presented to that process in. The task_active_pid_ns is stored in the struct pid of the task. Then there is the pid namespace that will be used for children that pid namespace is stored in task->nsproxy->pid_ns. Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com>
-
Eric W. Biederman authored
The expressions tsk->nsproxy->pid_ns and task_active_pid_ns aka ns_of_pid(task_pid(tsk)) should have the same number of cache line misses with the practical difference that ns_of_pid(task_pid(tsk)) is released later in a processes life. Furthermore by using task_active_pid_ns it becomes trivial to write an unshare implementation for the the pid namespace. So I have used task_active_pid_ns everywhere I can. In fork since the pid has not yet been attached to the process I use ns_of_pid, to achieve the same effect. Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com>
-
Eric W. Biederman authored
- Capture the the user namespace that creates the pid namespace - Use that user namespace to test if it is ok to write to /proc/sys/kernel/ns_last_pid. Zhao Hongjiang <zhaohongjiang@huawei.com> noticed I was missing a put_user_ns in when destroying a pid_ns. I have foloded his patch into this one so that bisects will work properly. Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
"Eric W. Biederman" <ebiederm@xmission.com>
-
Eric W. Biederman authored
The user namespace which creates a new network namespace owns that namespace and all resources created in it. This way we can target capability checks for privileged operations against network resources to the user_ns which created the network namespace in which the resource lives. Privilege to the user namespace which owns the network namespace, or any parent user namespace thereof, provides the same privilege to the network resource. This patch is reworked from a version originally by Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com>
-
Eric W. Biederman authored
The user namespace which creates a new network namespace owns that namespace and all resources created in it. This way we can target capability checks for privileged operations against network resources to the user_ns which created the network namespace in which the resource lives. Privilege to the user namespace which owns the network namespace, or any parent user namespace thereof, provides the same privilege to the network resource. This patch is reworked from a version originally by Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by:
Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 31 Oct, 2011 1 commit
-
-
Paul Gortmaker authored
The changed files were only including linux/module.h for the EXPORT_SYMBOL infrastructure, and nothing else. Revector them onto the isolated export header for faster compile times. Nothing to see here but a whole lot of instances of: -#include <linux/module.h> +#include <linux/export.h> This commit is only changing the kernel dir; next targets will probably be mm, fs, the arch dirs, etc. Signed-off-by:
Paul Gortmaker <paul.gortmaker@windriver.com>
-
- 20 Jul, 2011 1 commit
-
-
Al Viro authored
Signed-off-by:
Al Viro <viro@zeniv.linux.org.uk>
-
- 27 May, 2011 1 commit
-
-
Daniel Lezcano authored
The ns_cgroup is an annoying cgroup at the namespace / cgroup frontier and leads to some problems: * cgroup creation is out-of-control * cgroup name can conflict when pids are looping * it is not possible to have a single process handling a lot of namespaces without falling in a exponential creation time * we may want to create a namespace without creating a cgroup The ns_cgroup was replaced by a compatibility flag 'clone_children', where a newly created cgroup will copy the parent cgroup values. The userspace has to manually create a cgroup and add a task to the 'tasks' file. This patch removes the ns_cgroup as suggested in the following thread: https://lists.linux-foundation.org/pipermail/containers/2009-June/018616.html The 'cgroup_clone' function is removed because it is no longer used. This is a userspace-visible change. Commit 45531757 ("cgroup: notify ns_cgroup deprecated") (merged into 2.6.27) caused the kernel to emit a printk warning us...
-
- 10 May, 2011 1 commit
-
-
Eric W. Biederman authored
With the networking stack today there is demand to handle multiple network stacks at a time. Not in the context of containers but in the context of people doing interesting things with routing. There is also demand in the context of containers to have an efficient way to execute some code in the container itself. If nothing else it is very useful ad a debugging technique. Both problems can be solved by starting some form of login daemon in the namespaces people want access to, or you can play games by ptracing a process and getting the traced process to do things you want it to do. However it turns out that a login daemon or a ptrace puppet controller are more code, they are more prone to failure, and generally they are less efficient than simply changing the namespace of a process to a specified one. Pieces of this puzzle can also be solved by instead of coming up with a general purpose system call coming up with targed system calls perhaps socketat that solve a subset of the larger problem. Overall that appears to be more work for less reward. int setns(int fd, int nstype); The fd argument is a file descriptor referring to a proc file of the namespace you want to switch the process to. In the setns system call the nstype is 0 or specifies an clone flag of the namespace you intend to change to prevent changing a namespace unintentionally. v2: Most of the architecture support added by Daniel Lezcano <dlezcano@fr.ibm.com> v3: ported to v2.6.36-rc4 by: Eric W. Biederman <ebiederm@xmission.com> v4: Moved wiring up of the system call to another patch v5: Cleaned up the system call arguments - Changed the order. - Modified nstype to take the standard clone flags. v6: Added missing error handling as pointed out by Matt Helsley <matthltc@us.ibm.com> Acked-by:
Daniel Lezcano <daniel.lezcano@free.fr> Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com>
-
- 24 Mar, 2011 4 commits
-
-
Serge E. Hallyn authored
CAP_IPC_OWNER and CAP_IPC_LOCK can be checked against current_user_ns(), because the resource comes from current's own ipc namespace. setuid/setgid are to uids in own namespace, so again checks can be against current_user_ns(). Changelog: Jan 11: Use task_ns_capable() in place of sched_capable(). Jan 11: Use nsown_capable() as suggested by Bastian Blank. Jan 11: Clarify (hopefully) some logic in futex and sched.c Feb 15: use ns_capable for ipc, not nsown_capable Feb 23: let copy_ipcs handle setting ipc_ns->user_ns Feb 23: pass ns down rather than taking it from current [akpm@linux-foundation.org: coding-style fixes] Signed-off-by:
Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by:
"Eric W. Biederman" <ebiederm@xmission.com> Acked-by:
Daniel Lezcano <daniel.lezcano@free.fr> Acked-by:
David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torva...
-
Serge E. Hallyn authored
Changelog: Feb 15: Don't set new ipc->user_ns if we didn't create a new ipc_ns. Feb 23: Move extern declaration to ipc_namespace.h, and group fwd declarations at top. Signed-off-by:
Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by:
"Eric W. Biederman" <ebiederm@xmission.com> Acked-by:
Daniel Lezcano <daniel.lezcano@free.fr> Acked-by:
David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Serge E. Hallyn authored
Changelog: Feb 23: let clone_uts_ns() handle setting uts->user_ns To do so we need to pass in the task_struct who'll get the utsname, so we can get its user_ns. Feb 23: As per Oleg's coment, just pass in tsk, instead of two of its members. Signed-off-by:
Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by:
"Eric W. Biederman" <ebiederm@xmission.com> Acked-by:
Daniel Lezcano <daniel.lezcano@free.fr> Acked-by:
David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Serge E. Hallyn authored
The expected course of development for user namespaces targeted capabilities is laid out at https://wiki.ubuntu.com/UserNamespace. Goals: - Make it safe for an unprivileged user to unshare namespaces. They will be privileged with respect to the new namespace, but this should only include resources which the unprivileged user already owns. - Provide separate limits and accounting for userids in different namespaces. Status: Currently (as of 2.6.38) you can clone with the CLONE_NEWUSER flag to get a new user namespace if you have the CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID capabilities. What this gets you is a whole new set of userids, meaning that user 500 will have a different 'struct user' in your namespace than in other namespaces. So any accounting information stored in struct user will be unique to your namespace. However, throughout the kernel there are checks which - simply check for a capability. Since...
-
- 30 Mar, 2010 1 commit
-
-
Tejun Heo authored
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include bloc...
-
- 12 Mar, 2010 1 commit
-
-
Alexey Dobriyan authored
Remove INIT_NSPROXY(), use C99 initializer. Remove INIT_IPC_NS(), INIT_NET_NS() while I'm at it. Note: headers trim will be done later, now it's quite pointless because results will be invalidated by merge window. Signed-off-by:
Alexey Dobriyan <adobriyan@gmail.com> Acked-by:
Serge Hallyn <serue@us.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 18 Jun, 2009 1 commit
-
-
Alexey Dobriyan authored
clone_nsproxy() does useless copying of old nsproxy -- every pointer will be rewritten to new ns or to old ns. Remove copying, rename clone_nsproxy(), create_nsproxy() will be used by C/R code to create fresh nsproxy on restart. Signed-off-by:
Alexey Dobriyan <adobriyan@gmail.com> Acked-by:
Serge Hallyn <serue@us.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 24 Nov, 2008 1 commit
-
-
Serge Hallyn authored
The user_ns is moved from nsproxy to user_struct, so that a struct cred by itself is sufficient to determine access (which it otherwise would not be). Corresponding ecryptfs fixes (by David Howells) are here as well. Fix refcounting. The following rules now apply: 1. The task pins the user struct. 2. The user struct pins its user namespace. 3. The user namespace pins the struct user which created it. User namespaces are cloned during copy_creds(). Unsharing a new user_ns is no longer possible. (We could re-add that, but it'll cause code duplication and doesn't seem useful if PAM doesn't need to clone user namespaces). When a user namespace is created, its first user (uid 0) gets empty keyrings and a clean group_info. This incorporates a previous patch by David Howells. Here is his original patch description: >I suggest adding the attached incremental patch. It makes the following >changes: > > (1) Provides a current_user_ns() macro to wrap accesses to current's user > namespace. > > (2) Fixes eCryptFS. > > (3) Renames create_new_userns() to create_user_ns() to be more consistent > with the other associated functions and because the 'new' in the name is > superfluous. > > (4) Moves the argument and permission checks made for CLONE_NEWUSER to the > beginning of do_fork() so that they're done prior to making any attempts > at allocation. > > (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds > to fill in rather than have it return the new root user. I don't imagine > the new root user being used for anything other than filling in a cred > struct. > > This also permits me to get rid of a get_uid() and a free_uid(), as the > reference the creds were holding on the old user_struct can just be > transferred to the new namespace's creator pointer. > > (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under > preparation rather than doing it in copy_creds(). > >David >Signed-off-by: David Howells <dhowells@redhat.com> Changelog: Oct 20: integrate dhowells comments 1. leave thread_keyring alone 2. use current_user_ns() in set_user() Signed-off-by:
Serge Hallyn <serue@us.ibm.com>
-
- 23 Aug, 2008 1 commit
-
-
Adrian Bunk authored
This patch lets the files using linux/version.h match the files that #include it. Signed-off-by:
Adrian Bunk <bunk@kernel.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 25 Jul, 2008 1 commit
-
-
Serge E. Hallyn authored
cgroup_clone creates a new cgroup with the pid of the task. This works correctly for unshare, but for clone cgroup_clone is called from copy_namespaces inside copy_process, which happens before the new pid is created. As a result, the new cgroup was created with current's pid. This patch: 1. Moves the call inside copy_process to after the new pid is created 2. Passes the struct pid into ns_cgroup_clone (as it is not yet attached to the task) 3. Passes a name from ns_cgroup_clone() into cgroup_clone() so as to keep cgroup_clone() itself simpler 4. Uses pid_vnr() to get the process id value, so that the pid used to name the new cgroup is always the pid as it would be known to the task which did the cloning or unsharing. I think that is the most intuitive thing to do. This way, task t1 does clone(CLONE_NEWPID) to get t2, which does clone(CLONE_NEWPID) to get t3, then the cgroup for t3 will be named for the pid by which t2 knows t3. (Thanks to Dan Smith for finding the main bug) Changelog: June 11: Incorporate Paul Menage's feedback: don't pass NULL to ns_cgroup_clone from unshare, and reduce patch size by using 'nodename' in cgroup_clone. June 10: Original version [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by:
Serge Hallyn <serge@us.ibm.com> Acked-by:
Paul Menage <menage@google.com> Tested-by:
Dan Smith <danms@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 29 Apr, 2008 1 commit
-
-
Serge E. Hallyn authored
CLONE_NEWIPC|CLONE_SYSVSEM interaction isn't handled properly. This can cause a kernel memory corruption. CLONE_NEWIPC must detach from the existing undo lists. Fix, part 3: refuse clone(CLONE_SYSVSEM|CLONE_NEWIPC). With unshare, specifying CLONE_SYSVSEM means unshare the sysvsem. So it seems reasonable that CLONE_NEWIPC without CLONE_SYSVSEM would just imply CLONE_SYSVSEM. However with clone, specifying CLONE_SYSVSEM means *share* the sysvsem. So calling clone(CLONE_SYSVSEM|CLONE_NEWIPC) is explicitly asking for something we can't allow. So return -EINVAL in that case. [akpm@linux-foundation.org: cleanups] Signed-off-by:
Serge E. Hallyn <serue@us.ibm.com> Cc: Manfred Spraul <manfred@colorfullife.com> Acked-by:
"Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Pierre Peiffer <peifferp@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 08 Feb, 2008 1 commit
-
-
Pavel Emelyanov authored
Currently the IPC namespace management code is spread over the ipc/*.c files. I moved this code into ipc/namespace.c file which is compiled out when needed. The linux/ipc_namespace.h file is used to store the prototypes of the functions in namespace.c and the stubs for NAMESPACES=n case. This is done so, because the stub for copy_ipc_namespace requires the knowledge of the CLONE_NEWIPC flag, which is in sched.h. But the linux/ipc.h file itself in included into many many .c files via the sys.h->sem.h sequence so adding the sched.h into it will make all these .c depend on sched.h which is not that good. On the other hand the knowledge about the namespaces stuff is required in 4 .c files only. Besides, this patch compiles out some auxiliary functions from ipc/sem.c, msg.c and shm.c files. It turned out that moving these functions into namespaces.c is not that easy because they use many other calls and macros from the original file. Moving them would make this patch complicated. On the other hand all these functions can be consolidated, so I will send a separate patch doing this a bit later. Signed-off-by:
Pavel Emelyanov <xemul@openvz.org> Acked-by:
Serge Hallyn <serue@us.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 19 Oct, 2007 4 commits
-
-
Pavel Emelyanov authored
When clone() is invoked with CLONE_NEWPID, create a new pid namespace and then create a new struct pid for the new process. Allocate pid_t's for the new process in the new pid namespace and all ancestor pid namespaces. Make the newly cloned process the session and process group leader. Since the active pid namespace is special and expected to be the first entry in pid->upid_list, preserve the order of pid namespaces. The size of 'struct pid' is dependent on the the number of pid namespaces the process exists in, so we use multiple pid-caches'. Only one pid cache is created during system startup and this used by processes that exist only in init_pid_ns. When a process clones its pid namespace, we create additional pid caches as necessary and use the pid cache to allocate 'struct pids' for that depth. Note, that with this patch the newly created namespace won't work, since the rest of the kernel still uses global pids, but this is to be fixed soon. Init pid namespace still works. [oleg@tv-sign.ru: merge fix] Signed-off-by:
Pavel Emelyanov <xemul@openvz.org> Signed-off-by:
Sukadev Bhattiprolu <sukadev@us.ibm.com> Cc: Paul Menage <menage@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Pavel Emelyanov authored
When someone wants to deal with some other taks's namespaces it has to lock the task and then to get the desired namespace if the one exists. This is slow on read-only paths and may be impossible in some cases. E.g. Oleg recently noticed a race between unshare() and the (sent for review in cgroups) pid namespaces - when the task notifies the parent it has to know the parent's namespace, but taking the task_lock() is impossible there - the code is under write locked tasklist lock. On the other hand switching the namespace on task (daemonize) and releasing the namespace (after the last task exit) is rather rare operation and we can sacrifice its speed to solve the issues above. The access to other task namespaces is proposed to be performed like this: rcu_read_lock(); nsproxy = task_nsproxy(tsk); if (nsproxy != NULL) { / * * work with the namespaces here * e.g. get the reference on one of them * / } / * * NULL task_nsproxy() means that this task is * almost dead (zombie) * / rcu_read_unlock(); This patch has passed the review by Eric and Oleg :) and, of course, tested. [clg@fr.ibm.com: fix unshare()] [ebiederm@xmission.com: Update get_net_ns_by_pid] Signed-off-by:
Pavel Emelyanov <xemul@openvz.org> Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Signed-off-by:
Cedric Le Goater <clg@fr.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Sukadev Bhattiprolu authored
With multiple pid namespaces, a process is known by some pid_t in every ancestor pid namespace. Every time the process forks, the child process also gets a pid_t in every ancestor pid namespace. While a process is visible in >=1 pid namespaces, it can see pid_t's in only one pid namespace. We call this pid namespace it's "active pid namespace", and it is always the youngest pid namespace in which the process is known. This patch defines and uses a wrapper to find the active pid namespace of a process. The implementation of the wrapper will be changed in when support for multiple pid namespaces are added. Changelog: 2.6.22-rc4-mm2-pidns1: - [Pavel Emelianov, Alexey Dobriyan] Back out the change to use task_active_pid_ns() in child_reaper() since task->nsproxy can be NULL during task exit (so child_reaper() continues to use init_pid_ns). to implement child_reaper() since init_pid_ns.child_reaper to implement child_reaper() since tsk->nsproxy can be NULL during exit. 2.6.21-rc6-mm1: - Rename task_pid_ns() to task_active_pid_ns() to reflect that a process can have multiple pid namespaces. Signed-off-by:
Sukadev Bhattiprolu <sukadev@us.ibm.com> Acked-by:
Pavel Emelianov <xemul@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Cc: Herbert Poetzel <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Serge E. Hallyn authored
When a task enters a new namespace via a clone() or unshare(), a new cgroup is created and the task moves into it. This version names cgroups which are automatically created using cgroup_clone() as "node_<pid>" where pid is the pid of the unsharing or cloned process. (Thanks Pavel for the idea) This is safe because if the process unshares again, it will create /cgroups/(...)/node_<pid>/node_<pid> The only possibilities (AFAICT) for a -EEXIST on unshare are 1. pid wraparound 2. a process fails an unshare, then tries again. Case 1 is unlikely enough that I ignore it (at least for now). In case 2, the node_<pid> will be empty and can be rmdir'ed to make the subsequent unshare() succeed. Changelog: Name cloned cgroups as "node_<pid>". [clg@fr.ibm.com: fix order of cgroup subsystems in init/Kconfig] Signed-off-by:
Serge E. Hallyn <serue@us.ibm.com> Cc: Paul Menage <menage@google.com> Signed-off-by:
Cedric Le Goater <clg@fr.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 17 Oct, 2007 1 commit
-
-
Pavel Emelyanov authored
The blessed way for standard caches is to use it. Besides, this may give this cache a better alignment. Signed-off-by:
Pavel Emelyanov <xemul@openvz.org> Acked-by:
Cedric Le Goater <clg@fr.ibm.com> Acked-by:
Serge Hallyn <serue@us.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-