1. 01 Dec, 2019 6 commits
  2. 06 Nov, 2019 2 commits
    • Johannes Weiner's avatar
      mm/page_alloc.c: ratelimit allocation failure warnings more aggressively · 1be334e5
      Johannes Weiner authored
      While investigating a bug related to higher atomic allocation failures,
      we noticed the failure warnings positively drowning the console, and in
      our case trigger lockup warnings because of a serial console too slow to
      handle all that output.
      
      But even if we had a faster console, it's unclear what additional
      information the current level of repetition provides.
      
      Allocation failures happen for three reasons: The machine is OOM, the VM
      is failing to handle reasonable requests, or somebody is making
      unreasonable requests (and didn't acknowledge their opportunism with
      __GFP_NOWARN).  Having the memory dump, a callstack, and the ratelimit
      stats on skipped failure warnings should provide enough information to
      let users/admins/developers know whether something is wrong and point
      them in the right direction for debugging, bpftracing etc.
      
      Limit allocation failure warnings to one spew every ten seconds.
      
      Link: http://lkml.kernel.org/r/20191028194906.26899-1-hannes@cmpxchg.org
      
      Signed-off-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: default avatarDavid Rientjes <rientjes@google.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      1be334e5
    • Mel Gorman's avatar
      mm, meminit: recalculate pcpu batch and high limits after init completes · 3e8fc007
      Mel Gorman authored
      Deferred memory initialisation updates zone->managed_pages during the
      initialisation phase but before that finishes, the per-cpu page
      allocator (pcpu) calculates the number of pages allocated/freed in
      batches as well as the maximum number of pages allowed on a per-cpu
      list.  As zone->managed_pages is not up to date yet, the pcpu
      initialisation calculates inappropriately low batch and high values.
      
      This increases zone lock contention quite severely in some cases with
      the degree of severity depending on how many CPUs share a local zone and
      the size of the zone.  A private report indicated that kernel build
      times were excessive with extremely high system CPU usage.  A perf
      profile indicated that a large chunk of time was lost on zone->lock
      contention.
      
      This patch recalculates the pcpu batch and high values after deferred
      initialisation completes for every populated zone in the system.  It was
      tested on a 2-socket AMD EPYC 2 machine using a kernel compilation
      workload -- allmodconfig and all available CPUs.
      
      mmtests configuration: config-workload-kernbench-max Configuration was
      modified to build on a fresh XFS partition.
      
      kernbench
                                      5.4.0-rc3              5.4.0-rc3
                                        vanilla           resetpcpu-v2
      Amean     user-256    13249.50 (   0.00%)    16401.31 * -23.79%*
      Amean     syst-256    14760.30 (   0.00%)     4448.39 *  69.86%*
      Amean     elsp-256      162.42 (   0.00%)      119.13 *  26.65%*
      Stddev    user-256       42.97 (   0.00%)       19.15 (  55.43%)
      Stddev    syst-256      336.87 (   0.00%)        6.71 (  98.01%)
      Stddev    elsp-256        2.46 (   0.00%)        0.39 (  84.03%)
      
                         5.4.0-rc3    5.4.0-rc3
                           vanilla resetpcpu-v2
      Duration User       39766.24     49221.79
      Duration System     44298.10     13361.67
      Duration Elapsed      519.11       388.87
      
      The patch reduces system CPU usage by 69.86% and total build time by
      26.65%.  The variance of system CPU usage is also much reduced.
      
      Before, this was the breakdown of batch and high values over all zones
      was:
      
          256               batch: 1
          256               batch: 63
          512               batch: 7
          256               high:  0
          256               high:  378
          512               high:  42
      
      512 pcpu pagesets had a batch limit of 7 and a high limit of 42.  After
      the patch:
      
          256               batch: 1
          768               batch: 63
          256               high:  0
          768               high:  378
      
      [mgorman@techsingularity.net: fix merge/linkage snafu]
        Link: http://lkml.kernel.org/r/20191023084705.GD3016@techsingularity.netLink: http://lkml.kernel.org/r/20191021094808.28824-2-mgorman@techsingularity.net
      
      Signed-off-by: default avatarMel Gorman <mgorman@techsingularity.net>
      Acked-by: default avatarMichal Hocko <mhocko@suse.com>
      Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Acked-by: default avatarDavid Hildenbrand <david@redhat.com>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Qian Cai <cai@lca.pw>
      Cc: <stable@vger.kernel.org>	[4.1+]
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      3e8fc007
  3. 14 Oct, 2019 1 commit
    • David Rientjes's avatar
      mm, hugetlb: allow hugepage allocations to reclaim as needed · 3f36d866
      David Rientjes authored
      Commit b39d0ee2 ("mm, page_alloc: avoid expensive reclaim when
      compaction may not succeed") has chnaged the allocator to bail out from
      the allocator early to prevent from a potentially excessive memory
      reclaim.  __GFP_RETRY_MAYFAIL is designed to retry the allocation,
      reclaim and compaction loop as long as there is a reasonable chance to
      make forward progress.  Neither COMPACT_SKIPPED nor COMPACT_DEFERRED at
      the INIT_COMPACT_PRIORITY compaction attempt gives this feedback.
      
      The most obvious affected subsystem is hugetlbfs which allocates huge
      pages based on an admin request (or via admin configured overcommit).  I
      have done a simple test which tries to allocate half of the memory for
      hugetlb pages while the memory is full of a clean page cache.  This is
      not an unusual situation because we try to cache as much of the memory
      as possible and sysctl/sysfs interface to allocate huge pages is there
      for flexibility to allocate hugetlb pages at any time.
      
      System has 1GB of RAM and we are requesting 515MB worth of hugetlb pages
      after the memory is prefilled by a clean page cache:
      
        root@test1:~# cat hugetlb_test.sh
      
        set -x
        echo 0 > /proc/sys/vm/nr_hugepages
        echo 3 > /proc/sys/vm/drop_caches
        echo 1 > /proc/sys/vm/compact_memory
        dd if=/mnt/data/file-1G of=/dev/null bs=$((4<<10))
        TS=$(date +%s)
        echo 256 > /proc/sys/vm/nr_hugepages
        cat /proc/sys/vm/nr_hugepages
      
      The results for 2 consecutive runs on clean 5.3
      
        root@test1:~# sh hugetlb_test.sh
        + echo 0
        + echo 3
        + echo 1
        + dd if=/mnt/data/file-1G of=/dev/null bs=4096
        262144+0 records in
        262144+0 records out
        1073741824 bytes (1.1 GB) copied, 21.0694 s, 51.0 MB/s
        + date +%s
        + TS=1569905284
        + echo 256
        + cat /proc/sys/vm/nr_hugepages
        256
        root@test1:~# sh hugetlb_test.sh
        + echo 0
        + echo 3
        + echo 1
        + dd if=/mnt/data/file-1G of=/dev/null bs=4096
        262144+0 records in
        262144+0 records out
        1073741824 bytes (1.1 GB) copied, 21.7548 s, 49.4 MB/s
        + date +%s
        + TS=1569905311
        + echo 256
        + cat /proc/sys/vm/nr_hugepages
        256
      
      Now with b39d0ee2 applied
      
        root@test1:~# sh hugetlb_test.sh
        + echo 0
        + echo 3
        + echo 1
        + dd if=/mnt/data/file-1G of=/dev/null bs=4096
        262144+0 records in
        262144+0 records out
        1073741824 bytes (1.1 GB) copied, 20.1815 s, 53.2 MB/s
        + date +%s
        + TS=1569905516
        + echo 256
        + cat /proc/sys/vm/nr_hugepages
        11
        root@test1:~# sh hugetlb_test.sh
        + echo 0
        + echo 3
        + echo 1
        + dd if=/mnt/data/file-1G of=/dev/null bs=4096
        262144+0 records in
        262144+0 records out
        1073741824 bytes (1.1 GB) copied, 21.9485 s, 48.9 MB/s
        + date +%s
        + TS=1569905541
        + echo 256
        + cat /proc/sys/vm/nr_hugepages
        12
      
      The success rate went down by factor of 20!
      
      Although hugetlb allocation requests might fail and it is reasonable to
      expect them to under extremely fragmented memory or when the memory is
      under a heavy pressure but the above situation is not that case.
      
      Fix the regression by reverting back to the previous behavior for
      __GFP_RETRY_MAYFAIL requests and disable the beail out heuristic for
      those requests.
      
      Mike said:
      
      : hugetlbfs allocations are commonly done via sysctl/sysfs shortly after
      : boot where this may not be as much of an issue.  However, I am aware of at
      : least three use cases where allocations are made after the system has been
      : up and running for quite some time:
      :
      : - DB reconfiguration.  If sysctl/sysfs fails to get required number of
      :   huge pages, system is rebooted to perform allocation after boot.
      :
      : - VM provisioning.  If unable get required number of huge pages, fall
      :   back to base pages.
      :
      : - An application that does not preallocate pool, but rather allocates
      :   pages at fault time for optimal NUMA locality.
      :
      : In all cases, I would expect b39d0ee2 to cause regressions and
      : noticable behavior changes.
      :
      : My quick/limited testing in
      : https://lkml.kernel.org/r/3468b605-a3a9-6978-9699-57c52a90bd7e@oracle.com
      : was insufficient.  It was also mentioned that if something like
      : b39d0ee2 went forward, I would like exemptions for __GFP_RETRY_MAYFAIL
      : requests as in this patch.
      
      [mhocko@suse.com: reworded changelog]
      Link: http://lkml.kernel.org/r/20191007075548.12456-1-mhocko@kernel.org
      Fixes: b39d0ee2
      
       ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed")
      Signed-off-by: default avatarDavid Rientjes <rientjes@google.com>
      Signed-off-by: default avatarMichal Hocko <mhocko@suse.com>
      Reviewed-by: default avatarMike Kravetz <mike.kravetz@oracle.com>
      Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      3f36d866
  4. 07 Oct, 2019 1 commit
    • Qian Cai's avatar
      mm/page_alloc.c: fix a crash in free_pages_prepare() · 234fdce8
      Qian Cai authored
      On architectures like s390, arch_free_page() could mark the page unused
      (set_page_unused()) and any access later would trigger a kernel panic.
      Fix it by moving arch_free_page() after all possible accessing calls.
      
       Hardware name: IBM 2964 N96 400 (z/VM 6.4.0)
       Krnl PSW : 0404e00180000000 0000000026c2b96e (__free_pages_ok+0x34e/0x5d8)
                  R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
       Krnl GPRS: 0000000088d43af7 0000000000484000 000000000000007c 000000000000000f
                  000003d080012100 000003d080013fc0 0000000000000000 0000000000100000
                  00000000275cca48 0000000000000100 0000000000000008 000003d080010000
                  00000000000001d0 000003d000000000 0000000026c2b78a 000000002717fdb0
       Krnl Code: 0000000026c2b95c: ec1100b30659 risbgn %r1,%r1,0,179,6
                  0000000026c2b962: e32014000036 pfd 2,1024(%r1)
                 #0000000026c2b968: d7ff10001000 xc 0(256,%r1),0(%r1)
                 >0000000026c2b96e: 41101100  la %r1,256(%r1)
                  0000000026c2b972: a737fff8  brctg %r3,26c2b962
                  0000000026c2b976: d7ff10001000 xc 0(256,%r1),0(%r1)
                  0000000026c2b97c: e31003400004 lg %r1,832
                  0000000026c2b982: ebff1430016a asi 5168(%r1),-1
       Call Trace:
       __free_pages_ok+0x16a/0x5d8)
       memblock_free_all+0x206/0x290
       mem_init+0x58/0x120
       start_kernel+0x2b0/0x570
       startup_continue+0x6a/0xc0
       INFO: lockdep is turned off.
       Last Breaking-Event-Address:
       __free_pages_ok+0x372/0x5d8
       Kernel panic - not syncing: Fatal exception: panic_on_oops
       00: HCPGIR450W CP entered; disabled wait PSW 00020001 80000000 00000000 26A2379C
      
      In the past, only kernel_poison_pages() would trigger this but it needs
      "page_poison=on" kernel cmdline, and I suspect nobody tested that on
      s390.  Recently, kernel_init_free_pages() (commit 6471384a ("mm:
      security: introduce init_on_alloc=1 and init_on_free=1 boot options"))
      was added and could trigger this as well.
      
      [akpm@linux-foundation.org: add comment]
      Link: http://lkml.kernel.org/r/1569613623-16820-1-git-send-email-cai@lca.pw
      Fixes: 8823b1db ("mm/page_poison.c: enable PAGE_POISONING as a separate option")
      Fixes: 6471384a
      
       ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options")
      Signed-off-by: default avatarQian Cai <cai@lca.pw>
      Reviewed-by: default avatarHeiko Carstens <heiko.carstens@de.ibm.com>
      Acked-by: default avatarChristian Borntraeger <borntraeger@de.ibm.com>
      Acked-by: default avatarMichal Hocko <mhocko@suse.com>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Vasily Gorbik <gor@linux.ibm.com>
      Cc: Alexander Duyck <alexander.duyck@gmail.com>
      Cc: <stable@vger.kernel.org>	[5.3+]
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      234fdce8
  5. 28 Sep, 2019 1 commit
    • David Rientjes's avatar
      mm, page_alloc: avoid expensive reclaim when compaction may not succeed · b39d0ee2
      David Rientjes authored
      
      Memory compaction has a couple significant drawbacks as the allocation
      order increases, specifically:
      
       - isolate_freepages() is responsible for finding free pages to use as
         migration targets and is implemented as a linear scan of memory
         starting at the end of a zone,
      
       - failing order-0 watermark checks in memory compaction does not account
         for how far below the watermarks the zone actually is: to enable
         migration, there must be *some* free memory available.  Per the above,
         watermarks are not always suffficient if isolate_freepages() cannot
         find the free memory but it could require hundreds of MBs of reclaim to
         even reach this threshold (read: potentially very expensive reclaim with
         no indication compaction can be successful), and
      
       - if compaction at this order has failed recently so that it does not even
         run as a result of deferred compaction, looping through reclaim can often
         be pointless.
      
      For hugepage allocations, these are quite substantial drawbacks because
      these are very high order allocations (order-9 on x86) and falling back to
      doing reclaim can potentially be *very* expensive without any indication
      that compaction would even be successful.
      
      Reclaim itself is unlikely to free entire pageblocks and certainly no
      reliance should be put on it to do so in isolation (recall lumpy reclaim).
      This means we should avoid reclaim and simply fail hugepage allocation if
      compaction is deferred.
      
      It is also not helpful to thrash a zone by doing excessive reclaim if
      compaction may not be able to access that memory.  If order-0 watermarks
      fail and the allocation order is sufficiently large, it is likely better
      to fail the allocation rather than thrashing the zone.
      Signed-off-by: default avatarDavid Rientjes <rientjes@google.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      b39d0ee2
  6. 24 Sep, 2019 4 commits
  7. 03 Sep, 2019 1 commit
    • Matt Fleming's avatar
      sched/topology: Improve load balancing on AMD EPYC systems · a55c7454
      Matt Fleming authored
      SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init()
      for any sched domains with a NUMA distance greater than 2 hops
      (RECLAIM_DISTANCE). The idea being that it's expensive to balance
      across domains that far apart.
      
      However, as is rather unfortunately explained in:
      
        commit 32e45ff4
      
       ("mm: increase RECLAIM_DISTANCE to 30")
      
      the value for RECLAIM_DISTANCE is based on node distance tables from
      2011-era hardware.
      
      Current AMD EPYC machines have the following NUMA node distances:
      
       node distances:
       node   0   1   2   3   4   5   6   7
         0:  10  16  16  16  32  32  32  32
         1:  16  10  16  16  32  32  32  32
         2:  16  16  10  16  32  32  32  32
         3:  16  16  16  10  32  32  32  32
         4:  32  32  32  32  10  16  16  16
         5:  32  32  32  32  16  10  16  16
         6:  32  32  32  32  16  16  10  16
         7:  32  32  32  32  16  16  16  10
      
      where 2 hops is 32.
      
      The result is that the scheduler fails to load balance properly across
      NUMA nodes on different sockets -- 2 hops apart.
      
      For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4
      (CPUs 32-39) like so,
      
        $ numactl -C 0-7,32-39 ./spinner 16
      
      causes all threads to fork and remain on node 0 until the active
      balancer kicks in after a few seconds and forcibly moves some threads
      to node 4.
      
      Override node_reclaim_distance for AMD Zen.
      Signed-off-by: default avatarMatt Fleming <matt@codeblueprint.co.uk>
      Signed-off-by: default avatarPeter Zijlstra (Intel) <peterz@infradead.org>
      Acked-by: default avatarMel Gorman <mgorman@techsingularity.net>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@surriel.com>
      Cc: Suravee.Suthikulpanit@amd.com
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Thomas.Lendacky@amd.com
      Cc: Tony Luck <tony.luck@intel.com>
      Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk
      
      Signed-off-by: default avatarIngo Molnar <mingo@kernel.org>
      a55c7454
  8. 25 Aug, 2019 1 commit
    • David Rientjes's avatar
      mm, page_alloc: move_freepages should not examine struct page of reserved memory · cd961038
      David Rientjes authored
      After commit 907ec5fc ("mm: zero remaining unavailable struct
      pages"), struct page of reserved memory is zeroed.  This causes
      page->flags to be 0 and fixes issues related to reading
      /proc/kpageflags, for example, of reserved memory.
      
      The VM_BUG_ON() in move_freepages_block(), however, assumes that
      page_zone() is meaningful even for reserved memory.  That assumption is
      no longer true after the aforementioned commit.
      
      There's no reason why move_freepages_block() should be testing the
      legitimacy of page_zone() for reserved memory; its scope is limited only
      to pages on the zone's freelist.
      
      Note that pfn_valid() can be true for reserved memory: there is a
      backing struct page.  The check for page_to_nid(page) is also buggy but
      reserved memory normally only appears on node 0 so the zeroing doesn't
      affect this.
      
      Move the debug checks to after verifying PageBuddy is true.  This
      isolates the scope of the checks to only be for buddy pages which are on
      the zone's freelist which move_freepages_block() is operating on.  In
      this case, an incorrect node or zone is a bug worthy of being warned
      about (and the examination of struct page is acceptable bcause this
      memory is not reserved).
      
      Why does move_freepages_block() gets called on reserved memory? It's
      simply math after finding a valid free page from the per-zone free area
      to use as fallback.  We find the beginning and end of the pageblock of
      the valid page and that can bring us into memory that was reserved per
      the e820.  pfn_valid() is still true (it's backed by a struct page), but
      since it's zero'd we shouldn't make any inferences here about comparing
      its node or zone.  The current node check just happens to succeed most
      of the time by luck because reserved memory typically appears on node 0.
      
      The fix here is to validate that we actually have buddy pages before
      testing if there's any type of zone or node strangeness going on.
      
      We noticed it almost immediately after bringing 907ec5fc in on
      CONFIG_DEBUG_VM builds.  It depends on finding specific free pages in
      the per-zone free area where the math in move_freepages() will bring the
      start or end pfn into reserved memory and wanting to claim that entire
      pageblock as a new migratetype.  So the path will be rare, require
      CONFIG_DEBUG_VM, and require fallback to a different migratetype.
      
      Some struct pages were already zeroed from reserve pages before
      907ec5fca3c so it theoretically could trigger before this commit.  I
      think it's rare enough under a config option that most people don't run
      that others may not have noticed.  I wouldn't argue against a stable tag
      and the backport should be easy enough, but probably wouldn't single out
      a commit that this is fixing.
      
      Mel said:
      
      : The overhead of the debugging check is higher with this patch although
      : it'll only affect debug builds and the path is not particularly hot.
      : If this was a concern, I think it would be reasonable to simply remove
      : the debugging check as the zone boundaries are checked in
      : move_freepages_block and we never expect a zone/node to be smaller than
      : a pageblock and stuck in the middle of another zone.
      
      Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1908122036560.10779@chino.kir.corp.google.com
      
      Signed-off-by: default avatarDavid Rientjes <rientjes@google.com>
      Acked-by: default avatarMel Gorman <mgorman@techsingularity.net>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
      Cc: Oscar Salvador <osalvador@suse.de>
      Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      cd961038
  9. 20 Aug, 2019 1 commit
  10. 19 Jul, 2019 4 commits
    • Dan Williams's avatar
      mm/sparsemem: support sub-section hotplug · ba72b4c8
      Dan Williams authored
      The libnvdimm sub-system has suffered a series of hacks and broken
      workarounds for the memory-hotplug implementation's awkward
      section-aligned (128MB) granularity.
      
      For example the following backtrace is emitted when attempting
      arch_add_memory() with physical address ranges that intersect 'System
      RAM' (RAM) with 'Persistent Memory' (PMEM) within a given section:
      
          # cat /proc/iomem | grep -A1 -B1 Persistent\ Memory
          100000000-1ffffffff : System RAM
          200000000-303ffffff : Persistent Memory (legacy)
          304000000-43fffffff : System RAM
          440000000-23ffffffff : Persistent Memory
          2400000000-43bfffffff : Persistent Memory
            2400000000-43bfffffff : namespace2.0
      
          WARNING: CPU: 38 PID: 928 at arch/x86/mm/init_64.c:850 add_pages+0x5c/0x60
          [..]
          RIP: 0010:add_pages+0x5c/0x60
          [..]
          Call Trace:
           devm_memremap_pages+0x460/0x6e0
           pmem_attach_disk+0x29e/0x680 [nd_pmem]
           ? nd_dax_probe+0xfc/0x120 [libnvdimm]
           nvdimm_bus_probe+0x66/0x160 [libnvdimm]
      
      It was discovered that the problem goes beyond RAM vs PMEM collisions as
      some platform produce PMEM vs PMEM collisions within a given section.
      The libnvdimm workaround for that case revealed that the libnvdimm
      section-alignment-padding implementation has been broken for a long
      while.
      
      A fix for that long-standing breakage introduces as many problems as it
      solves as it would require a backward-incompatible change to the
      namespace metadata interpretation.  Instead of that dubious route [1],
      address the root problem in the memory-hotplug implementation.
      
      Note that EEXIST is no longer treated as success as that is how
      sparse_add_section() reports subsection collisions, it was also obviated
      by recent changes to perform the request_region() for 'System RAM'
      before arch_add_memory() in the add_memory() sequence.
      
      [1] https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com
      
      [osalvador@suse.de: fix deactivate_section for early sections]
        Link: http://lkml.kernel.org/r/20190715081549.32577-2-osalvador@suse.de
      Link: http://lkml.kernel.org/r/156092354368.979959.6232443923440952359.stgit@dwillia2-desk3.amr.corp.intel.com
      
      Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
      Signed-off-by: default avatarOscar Salvador <osalvador@suse.de>
      Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
      Reviewed-by: default avatarOscar Salvador <osalvador@suse.de>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Logan Gunthorpe <logang@deltatee.com>
      Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: Jane Chu <jane.chu@oracle.com>
      Cc: Jeff Moyer <jmoyer@redhat.com>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Mike Rapoport <rppt@linux.ibm.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Wei Yang <richardw.yang@linux.intel.com>
      Cc: Jason Gunthorpe <jgg@mellanox.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      ba72b4c8
    • Dan Williams's avatar
      mm: kill is_dev_zone() helper · 46d945ae
      Dan Williams authored
      Given there are no more usages of is_dev_zone() outside of 'ifdef
      CONFIG_ZONE_DEVICE' protection, kill off the compilation helper.
      
      Link: http://lkml.kernel.org/r/156092353211.979959.1489004866360828964.stgit@dwillia2-desk3.amr.corp.intel.com
      
      Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
      Reviewed-by: default avatarOscar Salvador <osalvador@suse.de>
      Reviewed-by: default avatarPavel Tatashin <pasha.tatashin@soleen.com>
      Reviewed-by: default avatarWei Yang <richardw.yang@linux.intel.com>
      Acked-by: default avatarDavid Hildenbrand <david@redhat.com>
      Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Logan Gunthorpe <logang@deltatee.com>
      Cc: Jane Chu <jane.chu@oracle.com>
      Cc: Jeff Moyer <jmoyer@redhat.com>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Mike Rapoport <rppt@linux.ibm.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Jason Gunthorpe <jgg@mellanox.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      46d945ae
    • Dan Williams's avatar
      mm/sparsemem: add helpers track active portions of a section at boot · f46edbd1
      Dan Williams authored
      Prepare for hot{plug,remove} of sub-ranges of a section by tracking a
      sub-section active bitmask, each bit representing a PMD_SIZE span of the
      architecture's memory hotplug section size.
      
      The implications of a partially populated section is that pfn_valid()
      needs to go beyond a valid_section() check and either determine that the
      section is an "early section", or read the sub-section active ranges
      from the bitmask.  The expectation is that the bitmask (subsection_map)
      fits in the same cacheline as the valid_section() / early_section()
      data, so the incremental performance overhead to pfn_valid() should be
      negligible.
      
      The rationale for using early_section() to short-ciruit the
      subsection_map check is that there are legacy code paths that use
      pfn_valid() at section granularity before validating the pfn against
      pgdat data.  So, the early_section() check allows those traditional
      assumptions to persist while also permitting subsection_map to tell the
      truth for purposes of populating the unused portions of early sections
      with PMEM and other ZONE_DEVICE mappings.
      
      Link: http://lkml.kernel.org/r/156092350874.979959.18185938451405518285.stgit@dwillia2-desk3.amr.corp.intel.com
      
      Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
      Reported-by: default avatarQian Cai <cai@lca.pw>
      Tested-by: default avatarJane Chu <jane.chu@oracle.com>
      Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
      Reviewed-by: default avatarOscar Salvador <osalvador@suse.de>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Logan Gunthorpe <logang@deltatee.com>
      Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: Jeff Moyer <jmoyer@redhat.com>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Mike Rapoport <rppt@linux.ibm.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Wei Yang <richardw.yang@linux.intel.com>
      Cc: Jason Gunthorpe <jgg@mellanox.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      f46edbd1
    • Dan Williams's avatar
      mm/sparsemem: introduce struct mem_section_usage · f1eca35a
      Dan Williams authored
      Patch series "mm: Sub-section memory hotplug support", v10.
      
      The memory hotplug section is an arbitrary / convenient unit for memory
      hotplug.  'Section-size' units have bled into the user interface
      ('memblock' sysfs) and can not be changed without breaking existing
      userspace.  The section-size constraint, while mostly benign for typical
      memory hotplug, has and continues to wreak havoc with 'device-memory'
      use cases, persistent memory (pmem) in particular.  Recall that pmem
      uses devm_memremap_pages(), and subsequently arch_add_memory(), to
      allocate a 'struct page' memmap for pmem.  However, it does not use the
      'bottom half' of memory hotplug, i.e.  never marks pmem pages online and
      never exposes the userspace memblock interface for pmem.  This leaves an
      opening to redress the section-size constraint.
      
      To date, the libnvdimm subsystem has attempted to inject padding to
      satisfy the internal constraints of arch_add_memory().  Beyond
      complicating the code, leading to bugs [2], wasting memory, and limiting
      configuration flexibility, the padding hack is broken when the platform
      changes this physical memory alignment of pmem from one boot to the
      next.  Device failure (intermittent or permanent) and physical
      reconfiguration are events that can cause the platform firmware to
      change the physical placement of pmem on a subsequent boot, and device
      failure is an everyday event in a data-center.
      
      It turns out that sections are only a hard requirement of the
      user-facing interface for memory hotplug and with a bit more
      infrastructure sub-section arch_add_memory() support can be added for
      kernel internal usages like devm_memremap_pages().  Here is an analysis
      of the current design assumptions in the current code and how they are
      addressed in the new implementation:
      
      Current design assumptions:
      
       - Sections that describe boot memory (early sections) are never
         unplugged / removed.
      
       - pfn_valid(), in the CONFIG_SPARSEMEM_VMEMMAP=y, case devolves to a
         valid_section() check
      
       - __add_pages() and helper routines assume all operations occur in
         PAGES_PER_SECTION units.
      
       - The memblock sysfs interface only comprehends full sections
      
      New design assumptions:
      
       - Sections are instrumented with a sub-section bitmask to track (on
         x86) individual 2MB sub-divisions of a 128MB section.
      
       - Partially populated early sections can be extended with additional
         sub-sections, and those sub-sections can be removed with
         arch_remove_memory(). With this in place we no longer lose usable
         memory capacity to padding.
      
       - pfn_valid() is updated to look deeper than valid_section() to also
         check the active-sub-section mask. This indication is in the same
         cacheline as the valid_section() so the performance impact is
         expected to be negligible. So far the lkp robot has not reported any
         regressions.
      
       - Outside of the core vmemmap population routines which are replaced,
         other helper routines like shrink_{zone,pgdat}_span() are updated to
         handle the smaller granularity. Core memory hotplug routines that
         deal with online memory are not touched.
      
       - The existing memblock sysfs user api guarantees / assumptions are not
         touched since this capability is limited to !online
         !memblock-sysfs-accessible sections.
      
      Meanwhile the issue reports continue to roll in from users that do not
      understand when and how the 128MB constraint will bite them.  The current
      implementation relied on being able to support at least one misaligned
      namespace, but that immediately falls over on any moderately complex
      namespace creation attempt.  Beyond the initial problem of 'System RAM'
      colliding with pmem, and the unsolvable problem of physical alignment
      changes, Linux is now being exposed to platforms that collide pmem ranges
      with other pmem ranges by default [3].  In short, devm_memremap_pages()
      has pushed the venerable section-size constraint past the breaking point,
      and the simplicity of section-aligned arch_add_memory() is no longer
      tenable.
      
      These patches are exposed to the kbuild robot on a subsection-v10 branch
      [4], and a preview of the unit test for this functionality is available
      on the 'subsection-pending' branch of ndctl [5].
      
      [2]: https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com
      [3]: https://github.com/pmem/ndctl/issues/76
      [4]: https://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm.git/log/?h=subsection-v10
      [5]: https://github.com/pmem/ndctl/commit/7c59b4867e1c
      
      This patch (of 13):
      
      Towards enabling memory hotplug to track partial population of a section,
      introduce 'struct mem_section_usage'.
      
      A pointer to a 'struct mem_section_usage' instance replaces the existing
      pointer to a 'pageblock_flags' bitmap.  Effectively it adds one more
      'unsigned long' beyond the 'pageblock_flags' (usemap) allocation to house
      a new 'subsection_map' bitmap.  The new bitmap enables the memory
      hot{plug,remove} implementation to act on incremental sub-divisions of a
      section.
      
      SUBSECTION_SHIFT is defined as global constant instead of per-architecture
      value like SECTION_SIZE_BITS in order to allow cross-arch compatibility of
      subsection users.  Specifically a common subsection size allows for the
      possibility that persistent memory namespace configurations be made
      compatible across architectures.
      
      The primary motivation for this functionality is to support platforms that
      mix "System RAM" and "Persistent Memory" within a single section, or
      multiple PMEM ranges with different mapping lifetimes within a single
      section.  The section restriction for hotplug has caused an ongoing saga
      of hacks and bugs for devm_memremap_pages() users.
      
      Beyond the fixups to teach existing paths how to retrieve the 'usemap'
      from a section, and updates to usemap allocation path, there are no
      expected behavior changes.
      
      Link: http://lkml.kernel.org/r/156092349845.979959.73333291612799019.stgit@dwillia2-desk3.amr.corp.intel.com
      
      Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
      Reviewed-by: default avatarOscar Salvador <osalvador@suse.de>
      Reviewed-by: default avatarWei Yang <richardw.yang@linux.intel.com>
      Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Logan Gunthorpe <logang@deltatee.com>
      Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: Mike Rapoport <rppt@linux.ibm.com>
      Cc: Jane Chu <jane.chu@oracle.com>
      Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Qian Cai <cai@lca.pw>
      Cc: Logan Gunthorpe <logang@deltatee.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Jeff Moyer <jmoyer@redhat.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Jason Gunthorpe <jgg@mellanox.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      f1eca35a
  11. 17 Jul, 2019 1 commit
  12. 12 Jul, 2019 7 commits
    • Alexander Potapenko's avatar
      mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options · 6471384a
      Alexander Potapenko authored
      Patch series "add init_on_alloc/init_on_free boot options", v10.
      
      Provide init_on_alloc and init_on_free boot options.
      
      These are aimed at preventing possible information leaks and making the
      control-flow bugs that depend on uninitialized values more deterministic.
      
      Enabling either of the options guarantees that the memory returned by the
      page allocator and SL[AU]B is initialized with zeroes.  SLOB allocator
      isn't supported at the moment, as its emulation of kmem caches complicates
      handling of SLAB_TYPESAFE_BY_RCU caches correctly.
      
      Enabling init_on_free also guarantees that pages and heap objects are
      initialized right after they're freed, so it won't be possible to access
      stale data by using a dangling pointer.
      
      As suggested by Michal Hocko, right now we don't let the heap users to
      disable initialization for certain allocations.  There's not enough
      evidence that doing so can speed up real-life cases, and introducing ways
      to opt-out may result in things going out of control.
      
      This patch (of 2):
      
      The new options are needed to prevent possible information leaks and make
      control-flow bugs that depend on uninitialized values more deterministic.
      
      This is expected to be on-by-default on Android and Chrome OS.  And it
      gives the opportunity for anyone else to use it under distros too via the
      boot args.  (The init_on_free feature is regularly requested by folks
      where memory forensics is included in their threat models.)
      
      init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
      objects with zeroes.  Initialization is done at allocation time at the
      places where checks for __GFP_ZERO are performed.
      
      init_on_free=1 makes the kernel initialize freed pages and heap objects
      with zeroes upon their deletion.  This helps to ensure sensitive data
      doesn't leak via use-after-free accesses.
      
      Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
      returns zeroed memory.  The two exceptions are slab caches with
      constructors and SLAB_TYPESAFE_BY_RCU flag.  Those are never
      zero-initialized to preserve their semantics.
      
      Both init_on_alloc and init_on_free default to zero, but those defaults
      can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
      CONFIG_INIT_ON_FREE_DEFAULT_ON.
      
      If either SLUB poisoning or page poisoning is enabled, those options take
      precedence over init_on_alloc and init_on_free: initialization is only
      applied to unpoisoned allocations.
      
      Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
      
      hackbench, init_on_free=1:  +7.62% sys time (st.err 0.74%)
      hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
      
      Linux build with -j12, init_on_free=1:  +8.38% wall time (st.err 0.39%)
      Linux build with -j12, init_on_free=1:  +24.42% sys time (st.err 0.52%)
      Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
      Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
      
      The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
      is within the standard error.
      
      The new features are also going to pave the way for hardware memory
      tagging (e.g.  arm64's MTE), which will require both on_alloc and on_free
      hooks to set the tags for heap objects.  With MTE, tagging will have the
      same cost as memory initialization.
      
      Although init_on_free is rather costly, there are paranoid use-cases where
      in-memory data lifetime is desired to be minimized.  There are various
      arguments for/against the realism of the associated threat models, but
      given that we'll need the infrastructure for MTE anyway, and there are
      people who want wipe-on-free behavior no matter what the performance cost,
      it seems reasonable to include it in this series.
      
      [glider@google.com: v8]
        Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
      [glider@google.com: v9]
        Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
      [glider@google.com: v10]
        Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
      Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
      
      Signed-off-by: default avatarAlexander Potapenko <glider@google.com>
      Acked-by: default avatarKees Cook <keescook@chromium.org>
      Acked-by: Michal Hocko <mhocko@suse.cz>		[page and dmapool parts
      Acked-by: James Morris <jamorris@linux.microsoft.com>]
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
      Cc: "Serge E. Hallyn" <serge@hallyn.com>
      Cc: Nick Desaulniers <ndesaulniers@google.com>
      Cc: Kostya Serebryany <kcc@google.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Sandeep Patil <sspatil@android.com>
      Cc: Laura Abbott <labbott@redhat.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Jann Horn <jannh@google.com>
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Marco Elver <elver@google.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      6471384a
    • Nicholas Piggin's avatar
      mm/large system hash: clear hashdist when only one node with memory is booted · e03a5125
      Nicholas Piggin authored
      CONFIG_NUMA on 64-bit CPUs currently enables hashdist unconditionally even
      when booting on single node machines.  This causes the large system hashes
      to be allocated with vmalloc, and mapped with small pages.
      
      This change clears hashdist if only one node has come up with memory.
      
      This results in the important large inode and dentry hashes using memblock
      allocations.  All others are within 4MB size up to about 128GB of RAM,
      which allows them to be allocated from the linear map on most non-NUMA
      images.
      
      Other big hashes like futex and TCP should eventually be moved over to the
      same style of allocation as those vfs caches that use HASH_EARLY if
      !hashdist, so they don't exceed MAX_ORDER on very large non-NUMA images.
      
      This brings dTLB misses for linux kernel tree `git diff` from ~45,000 to
      ~8,000 on a Kaby Lake KVM guest with 8MB dentry hash and mitigations=off
      (performance is in the noise, under 1% difference, page tables are likely
      to be well cached for this workload).
      
      Link: http://lkml.kernel.org/r/20190605144814.29319-2-npiggin@gmail.com
      
      Signed-off-by: default avatarNicholas Piggin <npiggin@gmail.com>
      Reviewed-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      e03a5125
    • Nicholas Piggin's avatar
      mm/large system hash: use vmalloc for size > MAX_ORDER when !hashdist · ec11408a
      Nicholas Piggin authored
      The kernel currently clamps large system hashes to MAX_ORDER when hashdist
      is not set, which is rather arbitrary.
      
      vmalloc space is limited on 32-bit machines, but this shouldn't result in
      much more used because of small physical memory limiting system hash
      sizes.
      
      Include "vmalloc" or "linear" in the kernel log message.
      
      Link: http://lkml.kernel.org/r/20190605144814.29319-1-npiggin@gmail.com
      
      Signed-off-by: default avatarNicholas Piggin <npiggin@gmail.com>
      Reviewed-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      ec11408a
    • Vlastimil Babka's avatar
      mm, debug_pagealloc: use a page type instead of page_ext flag · 3972f6bb
      Vlastimil Babka authored
      When debug_pagealloc is enabled, we currently allocate the page_ext
      array to mark guard pages with the PAGE_EXT_DEBUG_GUARD flag.  Now that
      we have the page_type field in struct page, we can use that instead, as
      guard pages are neither PageSlab nor mapped to userspace.  This reduces
      memory overhead when debug_pagealloc is enabled and there are no other
      features requiring the page_ext array.
      
      Link: http://lkml.kernel.org/r/20190603143451.27353-4-vbabka@suse.cz
      
      Signed-off-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Michal Hocko <mhocko@kernel.org>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      3972f6bb
    • Vlastimil Babka's avatar
      mm, page_alloc: more extensive free page checking with debug_pagealloc · 4462b32c
      Vlastimil Babka authored
      The page allocator checks struct pages for expected state (mapcount,
      flags etc) as pages are being allocated (check_new_page()) and freed
      (free_pages_check()) to provide some defense against errors in page
      allocator users.
      
      Prior commits 479f854a ("mm, page_alloc: defer debugging checks of
      pages allocated from the PCP") and 4db7548c ("mm, page_alloc: defer
      debugging checks of freed pages until a PCP drain") this has happened
      for order-0 pages as they were allocated from or freed to the per-cpu
      caches (pcplists).  Since those are fast paths, the checks are now
      performed only when pages are moved between pcplists and global free
      lists.  This however lowers the chances of catching errors soon enough.
      
      In order to increase the chances of the checks to catch errors, the
      kernel has to be rebuilt with CONFIG_DEBUG_VM, which also enables
      multiple other internal debug checks (VM_BUG_ON() etc), which is
      suboptimal when the goal is to catch errors in mm users, not in mm code
      itself.
      
      To catch some wrong users of the page allocator we have
      CONFIG_DEBUG_PAGEALLOC, which is designed to have virtually no overhead
      unless enabled at boot time.  Memory corruptions when writing to freed
      pages have often the same underlying errors (use-after-free, double free)
      as corrupting the corresponding struct pages, so this existing debugging
      functionality is a good fit to extend by also perform struct page checks
      at least as often as if CONFIG_DEBUG_VM was enabled.
      
      Specifically, after this patch, when debug_pagealloc is enabled on boot,
      and CONFIG_DEBUG_VM disabled, pages are checked when allocated from or
      freed to the pcplists *in addition* to being moved between pcplists and
      free lists.  When both debug_pagealloc and CONFIG_DEBUG_VM are enabled,
      pages are checked when being moved between pcplists and free lists *in
      addition* to when allocated from or freed to the pcplists.
      
      When debug_pagealloc is not enabled on boot, the overhead in fast paths
      should be virtually none thanks to the use of static key.
      
      Link: http://lkml.kernel.org/r/20190603143451.27353-3-vbabka@suse.cz
      
      Signed-off-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Reviewed-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: Michal Hocko <mhocko@kernel.org>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      4462b32c
    • Vlastimil Babka's avatar
      mm, debug_pagelloc: use static keys to enable debugging · 96a2b03f
      Vlastimil Babka authored
      Patch series "debug_pagealloc improvements".
      
      I have been recently debugging some pcplist corruptions, where it would be
      useful to perform struct page checks immediately as pages are allocated
      from and freed to pcplists, which is now only possible by rebuilding the
      kernel with CONFIG_DEBUG_VM (details in Patch 2 changelog).
      
      To make this kind of debugging simpler in future on a distro kernel, I
      have improved CONFIG_DEBUG_PAGEALLOC so that it has even smaller overhead
      when not enabled at boot time (Patch 1) and also when enabled (Patch 3),
      and extended it to perform the struct page checks more often when enabled
      (Patch 2).  Now it can be configured in when building a distro kernel
      without extra overhead, and debugging page use after free or double free
      can be enabled simply by rebooting with debug_pagealloc=on.
      
      This patch (of 3):
      
      CONFIG_DEBUG_PAGEALLOC has been redesigned by 031bc574
      ("mm/debug-pagealloc: make debug-pagealloc boottime configurable") to
      allow being always enabled in a distro kernel, but only perform its
      expensive functionality when booted with debug_pagelloc=on.  We can
      further reduce the overhead when not boot-enabled (including page
      allocator fast paths) using static keys.  This patch introduces one for
      debug_pagealloc core functionality, and another for the optional guard
      page functionality (enabled by booting with debug_guardpage_minorder=X).
      
      Link: http://lkml.kernel.org/r/20190603143451.27353-2-vbabka@suse.cz
      
      Signed-off-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Reviewed-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      96a2b03f
    • Denis Efremov's avatar
      mm: remove the exporting of totalram_pages · 98ef2046
      Denis Efremov authored
      Previously totalram_pages was the global variable.  Currently,
      totalram_pages is the static inline function from the include/linux/mm.h
      However, the function is also marked as EXPORT_SYMBOL, which is at best an
      odd combination.  Because there is no point for the static inline function
      from a public header to be exported, this commit removes the
      EXPORT_SYMBOL() marking.  It will be still possible to use the function in
      modules because all the symbols it depends on are exported.
      
      Link: http://lkml.kernel.org/r/20190710141031.15642-1-efremov@linux.com
      Fixes: ca79b0c2
      
       ("mm: convert totalram_pages and totalhigh_pages variables to atomic")
      Signed-off-by: default avatarDenis Efremov <efremov@linux.com>
      Acked-by: default avatarMichal Hocko <mhocko@suse.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Oscar Salvador <osalvador@suse.de>
      Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Mike Rapoport <rppt@linux.ibm.com>
      Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      98ef2046
  13. 05 Jul, 2019 1 commit
  14. 02 Jul, 2019 2 commits
  15. 21 May, 2019 1 commit
  16. 15 May, 2019 4 commits
    • Dan Williams's avatar
      mm: maintain randomization of page free lists · 97500a4a
      Dan Williams authored
      When freeing a page with an order >= shuffle_page_order randomly select
      the front or back of the list for insertion.
      
      While the mm tries to defragment physical pages into huge pages this can
      tend to make the page allocator more predictable over time.  Inject the
      front-back randomness to preserve the initial randomness established by
      shuffle_free_memory() when the kernel was booted.
      
      The overhead of this manipulation is constrained by only being applied
      for MAX_ORDER sized pages by default.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Link: http://lkml.kernel.org/r/154899812788.3165233.9066631950746578517.stgit@dwillia2-desk3.amr.corp.intel.com
      
      Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
      Reviewed-by: default avatarKees Cook <keescook@chromium.org>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Keith Busch <keith.busch@intel.com>
      Cc: Robert Elliott <elliott@hpe.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      97500a4a
    • Dan Williams's avatar
      mm: move buddy list manipulations into helpers · b03641af
      Dan Williams authored
      In preparation for runtime randomization of the zone lists, take all
      (well, most of) the list_*() functions in the buddy allocator and put
      them in helper functions.  Provide a common control point for injecting
      additional behavior when freeing pages.
      
      [dan.j.williams@intel.com: fix buddy list helpers]
        Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com
      [vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter]
        Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz
      Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.com
      
      Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
      Signed-off-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Tested-by: default avatarTetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
      Acked-by: default avatarMichal Hocko <mhocko@suse.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Keith Busch <keith.busch@intel.com>
      Cc: Robert Elliott <elliott@hpe.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      b03641af
    • Dan Williams's avatar
      mm: shuffle initial free memory to improve memory-side-cache utilization · e900a918
      Dan Williams authored
      Patch series "mm: Randomize free memory", v10.
      
      This patch (of 3):
      
      Randomization of the page allocator improves the average utilization of
      a direct-mapped memory-side-cache.  Memory side caching is a platform
      capability that Linux has been previously exposed to in HPC
      (high-performance computing) environments on specialty platforms.  In
      that instance it was a smaller pool of high-bandwidth-memory relative to
      higher-capacity / lower-bandwidth DRAM.  Now, this capability is going
      to be found on general purpose server platforms where DRAM is a cache in
      front of higher latency persistent memory [1].
      
      Robert offered an explanation of the state of the art of Linux
      interactions with memory-side-caches [2], and I copy it here:
      
          It's been a problem in the HPC space:
          http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/
      
          A kernel module called zonesort is available to try to help:
          https://software.intel.com/en-us/articles/xeon-phi-software
      
          and this abandoned patch series proposed that for the kernel:
          https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com
      
          Dan's patch series doesn't attempt to ensure buffers won't conflict, but
          also reduces the chance that the buffers will. This will make performance
          more consistent, albeit slower than "optimal" (which is near impossible
          to attain in a general-purpose kernel).  That's better than forcing
          users to deploy remedies like:
              "To eliminate this gradual degradation, we have added a Stream
               measurement to the Node Health Check that follows each job;
               nodes are rebooted whenever their measured memory bandwidth
               falls below 300 GB/s."
      
      A replacement for zonesort was merged upstream in commit cc9aec03
      ("x86/numa_emulation: Introduce uniform split capability").  With this
      numa_emulation capability, memory can be split into cache sized
      ("near-memory" sized) numa nodes.  A bind operation to such a node, and
      disabling workloads on other nodes, enables full cache performance.
      However, once the workload exceeds the cache size then cache conflicts
      are unavoidable.  While HPC environments might be able to tolerate
      time-scheduling of cache sized workloads, for general purpose server
      platforms, the oversubscribed cache case will be the common case.
      
      The worst case scenario is that a server system owner benchmarks a
      workload at boot with an un-contended cache only to see that performance
      degrade over time, even below the average cache performance due to
      excessive conflicts.  Randomization clips the peaks and fills in the
      valleys of cache utilization to yield steady average performance.
      
      Here are some performance impact details of the patches:
      
      1/ An Intel internal synthetic memory bandwidth measurement tool, saw a
         3X speedup in a contrived case that tries to force cache conflicts.
         The contrived cased used the numa_emulation capability to force an
         instance of the benchmark to be run in two of the near-memory sized
         numa nodes.  If both instances were placed on the same emulated they
         would fit and cause zero conflicts.  While on separate emulated nodes
         without randomization they underutilized the cache and conflicted
         unnecessarily due to the in-order allocation per node.
      
      2/ A well known Java server application benchmark was run with a heap
         size that exceeded cache size by 3X.  The cache conflict rate was 8%
         for the first run and degraded to 21% after page allocator aging.  With
         randomization enabled the rate levelled out at 11%.
      
      3/ A MongoDB workload did not observe measurable difference in
         cache-conflict rates, but the overall throughput dropped by 7% with
         randomization in one case.
      
      4/ Mel Gorman ran his suite of performance workloads with randomization
         enabled on platforms without a memory-side-cache and saw a mix of some
         improvements and some losses [3].
      
      While there is potentially significant improvement for applications that
      depend on low latency access across a wide working-set, the performance
      may be negligible to negative for other workloads.  For this reason the
      shuffle capability defaults to off unless a direct-mapped
      memory-side-cache is detected.  Even then, the page_alloc.shuffle=0
      parameter can be specified to disable the randomization on those systems.
      
      Outside of memory-side-cache utilization concerns there is potentially
      security benefit from randomization.  Some data exfiltration and
      return-oriented-programming attacks rely on the ability to infer the
      location of sensitive data objects.  The kernel page allocator, especially
      early in system boot, has predictable first-in-first out behavior for
      physical pages.  Pages are freed in physical address order when first
      onlined.
      
      Quoting Kees:
          "While we already have a base-address randomization
           (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and
           memory layouts would certainly be using the predictability of
           allocation ordering (i.e. for attacks where the base address isn't
           important: only the relative positions between allocated memory).
           This is common in lots of heap-style attacks. They try to gain
           control over ordering by spraying allocations, etc.
      
           I'd really like to see this because it gives us something similar
           to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator."
      
      While SLAB_FREELIST_RANDOM reduces the predictability of some local slab
      caches it leaves vast bulk of memory to be predictably in order allocated.
      However, it should be noted, the concrete security benefits are hard to
      quantify, and no known CVE is mitigated by this randomization.
      
      Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform
      a Fisher-Yates shuffle of the page allocator 'free_area' lists when they
      are initially populated with free memory at boot and at hotplug time.  Do
      this based on either the presence of a page_alloc.shuffle=Y command line
      parameter, or autodetection of a memory-side-cache (to be added in a
      follow-on patch).
      
      The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free
      pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e.  10,
      4MB this trades off randomization granularity for time spent shuffling.
      MAX_ORDER-1 was chosen to be minimally invasive to the page allocator
      while still showing memory-side cache behavior improvements, and the
      expectation that the security implications of finer granularity
      randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM.  The
      performance impact of the shuffling appears to be in the noise compared to
      other memory initialization work.
      
      This initial randomization can be undone over time so a follow-on patch is
      introduced to inject entropy on page free decisions.  It is reasonable to
      ask if the page free entropy is sufficient, but it is not enough due to
      the in-order initial freeing of pages.  At the start of that process
      putting page1 in front or behind page0 still keeps them close together,
      page2 is still near page1 and has a high chance of being adjacent.  As
      more pages are added ordering diversity improves, but there is still high
      page locality for the low address pages and this leads to no significant
      impact to the cache conflict rate.
      
      [1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
      [2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM
      [3]: https://lkml.org/lkml/2018/10/12/309
      
      [dan.j.williams@intel.com: fix shuffle enable]
        Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com
      [cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts]
        Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw
      Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com
      
      Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
      Signed-off-by: default avatarQian Cai <cai@lca.pw>
      Reviewed-by: default avatarKees Cook <keescook@chromium.org>
      Acked-by: default avatarMichal Hocko <mhocko@suse.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Keith Busch <keith.busch@intel.com>
      Cc: Robert Elliott <elliott@hpe.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      e900a918
    • Baruch Siach's avatar
      mm: update references to page _refcount · 136ac591
      Baruch Siach authored
      Commit 0139aa7b ("mm: rename _count, field of the struct page, to
      _refcount") left out a couple of references to the old field name.  Fix
      that.
      
      Link: http://lkml.kernel.org/r/cedf87b02eb8a6b3eac57e8e91da53fb15c3c44c.1556537475.git.baruch@tkos.co.il
      Fixes: 0139aa7b
      
       ("mm: rename _count, field of the struct page, to _refcount")
      Signed-off-by: default avatarBaruch Siach <baruch@tkos.co.il>
      Reviewed-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      136ac591
  17. 14 May, 2019 2 commits